Gazmarket59.ru

Газ Маркет 59
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Доклад тепловое действие электрического тока 8 класс

Урок физики в 8-м классе «Действия электрического тока»

изучение действий электрического тока экспериментальным путём;

Задачи урока:

формировать исследовательские навыки;

создание активной познавательной среды, необходимой для диалога учителя с обучающимися, эвристической беседы;

формировать навыки работы в группе;

познакомить учащихся с причинами поражения током и правилами техники безопасности при работе с электричеством;

познакомить с действием электрического тока на организм человека.

Оборудование: Мультимедиапроектор. Презентация

Лабораторное : источники питания, ключи, резистор (спираль), железный гвоздь, металлические опилки, рамка из провода, дугообразный магнит, лампочка на подставке, электроды, дистиллированная вода, раствор соли (медного купороса).

Тип урока: Изучение нового материала.

Вид урока: Урок-исследование.

Дополнительные файлы

  • Урок Действие электрического тока
    Размер файла: 116 КБ

Постоянная ссылка на это сообщение: https://oneschool.ru/urok-fiziki-v-8-m-klasse-dejstviya-elektricheskogo-toka/

Добавить комментарий Отменить ответ

Меню сайта

  • Новости
    • Гимназия в средствах массовой информации
  • Региональный ресурсный центр
  • РДШ
  • Дистанционное обучение
  • Методическая копилка
  • Служба медиации
  • Конкурсы, олимпиады, соревнования
  • Всероссийская олимпиада школьников
  • Здоровый образ жизни
  • Дорожная безопасность
  • Безопасность на железной дороге
  • Противодействие коррупции
  • Противодействие терроризму и экстремизму
  • Защита персональных данных
  • Госуслуги
  • Муниципальные услуги
  • Информационная безопасность
  • Лето 2020
  • Организация питания

Версия для слабовидящих

Методическая копилка Татьяны Алексеевны Ряполовой

Методическая копилка

  • Русский язык и литература
  • Физика
  • Математика
  • Информатика
  • Начальные классы
  • Иностранный язык
  • Логопедия
  • Внеклассная работа
  • Дополнительное образование

О Гимназии

  • Основные сведения
  • Структура и органы управления образовательной организацией
  • Документы
  • Образование
    • Учебный план
    • Календарный учебный график
    • Рабочие программы
  • Образовательные стандарты
  • Руководство. Педагогический состав
  • Материально-техническое обеспечение и оснащённость образовательного процесса
  • Платные образовательные услуги
  • Финансово-хозяйственная деятельность
  • Вакантные места для приема (перевода)
  • Доступная среда
  • Международное сотрудничество

Наши учителя

Методическая копилка

  • Русский язык и литература
  • Физика
  • Математика
  • Информатика
  • Начальные классы
  • Иностранный язык
  • Логопедия
  • Внеклассная работа
  • Дополнительное образование
  • Новости
    • Гимназия в средствах массовой информации
  • Региональный ресурсный центр
  • РДШ
  • Дистанционное обучение
  • Методическая копилка
  • Служба медиации
  • Конкурсы, олимпиады, соревнования
  • Всероссийская олимпиада школьников
  • Здоровый образ жизни
  • Дорожная безопасность
  • Безопасность на железной дороге
  • Противодействие коррупции
  • Противодействие терроризму и экстремизму
  • Защита персональных данных
  • Госуслуги
  • Муниципальные услуги
  • Информационная безопасность
  • Лето 2020
  • Организация питания
Читайте так же:
Какого сечения нужен провод для теплого пола

Муниципальное бюджетное образовательное учреждение «Гимназия № 1»
ВНИМАНИЕ! Никакая часть материалов сайта МБОУ«Гимназия № 1» не может быть использована в коммерческих целях. Распространять, передавать и пересылать материалы третьим лицам, публиковать их в электронной, «бумажной» или иной форме не допускается без официального разрешения администрации МБОУ«Гимназия № 1». При использовании материалов сайта должно быть указано: «Материалы были взяты с сайта МБОУ«Гимназия № 1», http://oneschool1.tmweb.ru/»

Создано с помощью автором Graphene Themes.

Урок 36 (дополнительный материал). Принцип действия электродвигателя. Электроизмерительные приборы

  • » onclick=»window.open(this.href,’win2′,’status=no,toolbar=no,scrollbars=yes,titlebar=no,menubar=no,resizable=yes,width=640,height=480,directories=no,location=no’); return false;» rel=»nofollow»> Печать
  • E-mail

Принцип действия электродвигателя.

Электродвигательэто просто устройство для эффективного преобразования электрической энергии в механическую.

В основе этого преобразования лежит магнетизм. В электродвигателях используются постоянные магниты и электромагниты, кроме того, используются магнитные свойства различных материалов, чтобы создавать эти удивительные устройства.

Существует несколько типов электродвигателей. Отметим два главных класса: AC и DC.

Электродвигатели класса AC (Alternating Current) требуют для работы источник переменного тока или напряжения (такой источник Вы можете найти в любой электрической розетке в доме).

Электродвигатели класса DC (Direct Current) требуют для работы источник постоянного тока или напряжения (такой источник Вы можете найти в любой батарейке).

Универсальные двигатели могут работать от источника любого типа.

Не только конструкция двигателей различна, различны способы контроля скорости и вращающего момента, хотя принцип преобразования энергии одинаков для всех типов.

Устройство и принцип работы простейшего электродвигателя.

В основе конструкции электрического двигателя лежит эффект, обнаруженный Майклом Фарадеем в 1821 году: что взаимодействие электрического тока и магнита может вызывать непрерывное вращение. Один из первых двигателей, нашедших практическое применение, был двигатель Бориса Семеновича Якоби (1801 –1874), приводивший в движение катер с 12 пассажирами на борту. Однако для широкого использования электродвигателя необходим был источник дешевой электроэнергии — электромагнитный генератор.

Принцип работы электродвигателя очень прост: вращение вызывается силами магнитного притяжения и отталкивания, действующими между полюсами подвижного электромагнита (ротора) и соответствующими полюсами внешнего магнитного поля, создаваемого неподвижным электромагнитом (или постоянным магнитом) — статором.

Читайте так же:
Теплогенератор ток 1в паспорт

Вращающаяся часть электрической машины называется ротором (или якорем), а неподвижная — статором. В простом электродвигателе постоянного тока блок катушки служит ротором, а постоянный магнит — статором.

Сложность заключается в том, чтобы добиться непрерывного вращения двигателя. А для этого надо сделать так, чтобы полюс подвижного электромагнита, притянувшись к противоположному полюсу статора, автоматически менялся на противоположный — тогда ротор не замрет на месте, а повернется дальше — по инерции и под действием возникшего в этот момент отталкивания.

Для автоматического переключения полюсов ротора служит коллектор. Он представляет собой пару закрепленных на валу ротора пластин, к которым подключены обмотки ротора. Ток на эти пластины подается через токоснимающие контакты (щетки). При повороте ротора на 180° пластины меняются местами — это автоматически меняет направление тока и, следовательно, полюсы подвижного электромагнита. Так как одноименные полюсы взаимно отталкиваются, катушка продолжает вращаться, а ее полюсы притягиваются к соответствующим полюсам на другой стороне магнита.

Простейший электродвигатель

Простейший электродвигатель работает только на постоянном токе (от батарейки). Ток проходит по рамке, расположенной между полюсами постоянного магнита. Взаимодействие магнитных полей рамки с током и магнита заставляет рамку поворачиваться. После каждого полуоборота коллектор переключает контакты рамки, подходящие к батарейке, и поэтому рамка вращается.

В некоторых двигателях для создания магнитного поля вместо постоянного магнита служит электромагнит. Витки проволоки такого электромагнита называются обмоткой возбуждения.

Электродвигатели используются повсюду. Даже дома вы можете обнаружить огромное количество электродвигателей. Электродвигатели используются в часах, в вентиляторе микроволновой печи, в стиральной машине, в компьютерных вентиляторах, в кондиционере, в соковыжималке и т. д. и т. п. Ну а электродвигатели, применяемые в промышленности, можно перечислять бесконечно. Диапазон физических размеров – от размера со спичечную головку до размера локомотивного двигателя.

Показанный ниже промышленный электродвигатель работает и на постоянном, и на переменном токе. Его статор – это электромагнит, создающий магнитное поле. Обмотки двигателя поочередно подключаются через щетки к источнику питания. Одна за другой они поворачивают ротор на небольшой угол, и ротор непрерывно вращается.

Читайте так же:
Ток утечки для теплого пола

Промышленный электродвигатель

Электроизмерительные приборы.

Электроизмерительные приборы — класс устройств, применяемых для измерения различных электрических величин.

Группа электромагнитных приборов является наиболее распространенной. Принцип их действия, использованный впервые еще Ф. Кольраушем в 1884 году, основан на перемещении подвижной железной части под влиянием магнитного потока, создаваемого катушкой, по которой пропускается ток. Практическое осуществление этого принципа отличается разнообразием.

Ориентирующее действие магнитного поля на контур с током используют в электроизмерительных приборах магнитоэлектрической системы – амперметрах, вольтметрах и др.

Устройство прибора магнитоэлектрической системы

Измерительный прибор магнитоэлектрической системы устроен следующим образом.

Берут лёгкую алюминиевую рамку 2 прямоугольной формы, наматывают на неё катушку из тонкого провода. Рамку крепят на двух полуосях О и О’, к которым прикреплена также стрелка прибора 4. Ось удерживается двумя тонкими спиральными пружинами 3. Силы упругости пружин, возвращающие рамку к положению равновесия в отсутствие тока, подобраны такими, чтобы были пропорциональными углу отклонения стрелки от положения равновесия. Катушку помещают между полюсами постоянного магнита М с наконечниками формы полого цилиндра. Внутри катушки располагают цилиндр 1 из мягкого железа. Такая конструкция обеспечивает радиальное направление линий магнитной индукции в области нахождения витков катушки (см рисунок).

В результате при любом положении катушки силы, действующие на нее со стороны магнитного поля, максимальны и при неизменной силе тока постоянны. Векторы F и –F изображают силы, действующие на катушку со стороны магнитного поля и поворачивающие ее. Катушка с током поворачивается до тех пор, пока силы упругости со стороны пружины не уравновесят силы, действующие на рамку со стороны магнитного поля. Увеличивая силу тока в рамке в 2 раза, рамка повернётся на угол, вдвое больший. Это происходит потому, что Fm

Силы, действующие на рамку с током прямо пропорциональны силе тока, то есть можно, проградуировав прибор, измерять силу тока в рамке.

Точно так же можно прибор настроить на измерение напряжения в цепи, если проградуировать шкалу в вольтах, причём сопротивление рамки с током должно быть выбрано очень большим по сравнению с сопротивлением участка цепи, на котором измеряем напряжение.

Читайте так же:
Генераторы переменного тока синхронные генераторы для тепловозов

Дополнительные материалы.

2. Презентация «Электроизмерительные приборы» скачать с Яндекса

Передача (проведение) электричества

Все ли вещества могут одинаково передавать электрический заряд? Ответ можно получить с помощью двух электрометров, металлического стержня и эбонитовой палочки. Стержень и палочка крепятся к пластмассовой ручке.

  • а – сообщить первому электрометру заряд, коснувшись шарика каким-либо заряженным телом;
  • б – стержнем из металла соединить оба электрометра. Половина заряда с первого электрометра перейдет на второй;
  • в – соединить электрометры эбонитовой палочкой. Перехода заряда не наблюдается.

Вещества, способные проводить электрические заряды, как в случае под буквой б, называются проводниками (металлы, кислотные, щелочные и солевые растворы). Вещества, с помощью которых нельзя передать заряды, называются диэлектриками (изоляторами). Хорошие диэлектрики – это резина, стекло, эбонит, фарфор, пластмассы, воздух и др.

Способы профилактики и повышения электробезопасности в быту

Для поддержания нормально уровня электробезопасности в быту, необходимо проводить определенные профилактические мероприятия, направленные на ее повышение.

  • При установке электроприбора, необходимо соблюдать инструкцию по эксплуатации устройства.
  • Все оборудование должно быть заземлено.
  • Раз в полгода осуществлять проверку всех электроприборов в помещении на наличие неисправностей.
  • Использовать ограждающие средства защиты, которые отвечают за ограждение от токоведущих частей (щиты, ограждения-клетки, изолирующие колпаки).
  • Для повышения электробезопасности необходимо использовать сигнализирующие средства, которые дают понять о какой-либо неисправности.
  • Предохранительные средства защиты. Представляют собой очки, противогазы и рукавицы. Во время проведения профилактических мероприятий отвечают за индивидуальную защиту электрика.
  • Не оставляйте патроны ламп подвешенными на проводах, так как это может вызвать замыкание или искры.

В данной статье я рассказал правилах работы с электричеством, способах повышения уровня электробезопасности. При работе с электричеством помните об этих правилах, и вы не столкнетесь с неприятными последствиями электротравм. Используйте профилактические мероприятия для обеспечения электробезопасноти вашей семьи.

Самостоятельный разряд

После прохождения точки сила тока при увеличении напряжения резко возрастает — начинается самостоятельный разряд. Сейчас мы разберёмся, что это такое.

Заряженные частицы газа движутся от столкновения к столкновению; в промежутках между столкновениями они разгоняются электрическим полем, увеличивая свою кинетическую энергию. И вот, когда напряжение становится достаточно большим (та самая точка ), электроны за время свободного пробега достигают таких энергий, что при соударении с нейтральными атомами ионизируют их! (С помощью законов сохранения импульса и энергии можно показать, что именно электроны (а не ионы), ускоряемые электрическим полем, обладают максимальной способностью ионизировать атомы.)

Читайте так же:
Тепловозы с электрической передачей переменно постоянного тока

Начинается так называемая ионизация электронным ударом. Электроны, выбитые из ионизированных атомов, также разгоняются электрическим полем и налетают на новые атомы, ионизируя теперь уже их и порождая новые электроны. В результате возникающей электронной лавины число ионизированных атомов стремительно возрастает, вследствие чего быстро возрастает и сила тока.

Количество свободных зарядов становится таким большим, что необходимость во внешнем ионизаторе отпадает. Его можно попросту убрать. Свободные заряженные частицы теперь порождаются в результате внутренних процессов, происходящих в газе — вот почему разряд называется самостоятельным.

Если газовый промежуток находится под высоким напряжением, то для самостоятельного разряда не нужен никакой ионизатор. Достаточно в газе оказаться лишь одному свободному электрону, и начнётся описанная выше электронная лавина. А хотя бы один свободный электрон всегда найдётся!

Вспомним ещё раз, что в газе даже при обычных условиях имеется некоторое «естественное» количество свободных зарядов, обусловленное ионизирующим радиоактивным излучением земной коры, высокочастотным излучением Солнца, космическими лучами. Мы видели, что при малых напряжениях проводимость газа, вызванная этими свободными зарядами, ничтожно мала, но теперь — при высоком напряжении — они-то и породят лавину новых частиц, дав начало самостоятельному разряду. Произойдёт, как говорят, пробой газового промежутка.

Напряжённость поля, необходимая для пробоя сухого воздуха, равна примерно кВ/см. Иными словами, чтобы между электродами, разделёнными сантиметром воздуха, проскочила искра, на них нужно подать напряжение киловольт. Вообразите же, какое напряжение необходимо для пробоя нескольких километров воздуха! А ведь именно такие пробои происходят во время грозы — это прекрасно известные вам молнии.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector