Gazmarket59.ru

Газ Маркет 59
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Формула количества теплоты которую выделяет проводник с током

Нагревание проводников электрическим током

Средняя оценка: 4.2

Всего получено оценок: 81.

Средняя оценка: 4.2

Всего получено оценок: 81.

Одним из свойств электрического тока является нагрев проводников, по которым он протекает. Этот эффект был замечен многими исследователями, но его понимание пришло только выяснения механизма взаимодействия заряженных частиц с атомами и молекулами проводников. Нагрев приводит к выделению тепла и повышению температуры, а количество выделяемого тепла можно рассчитать с помощью формулы закона Джоуля-Ленца.

Магнитная индукция прямолинейного проводника

Как известно простейшее магнитное поле создает прямолинейный проводник, по которому протекает электрический ток. Как я уже говорил в предыдущей статье, силовые линии данного магнитного поля представляют собой концентрические окружности расположенные вокруг проводника.


Магнитная индукция магнитного поля создаваемого прямолинейным проводником с током.

Для определения магнитной индукции В прямого провода в точке Р введем некоторые обозначения. Так как точка Р находится на расстоянии b от провода, то расстояние от любой точки провода до точки Р определяется как r = b/sinα. Тогда наименьшую длину проводника dl можно вычислить из следующего выражения

В итоге закон Био – Савара – Лапласа для прямолинейного провода бесконечной длины будет иметь вид

где I – ток, протекающий по проводу,

b – расстояние от центра провода до точки, в которой рассчитывается магнитная индукция.

Теперь просто проинтегрируем получившееся выражение по в пределах от 0 до π.

Таким образом, итоговое выражение для магнитной индукции прямолинейного провода бесконечной длины будет иметь вид

где μ – магнитная постоянная, μ = 4π•10 -7 Гн/м,

I – ток, протекающий по проводу,

b – расстояние от центра проводника до точки, в которой измеряется индукция.

Читайте так же:
Вещество плохо проводящее тепло или электрический ток

Формула количества теплоты при фазовых переходах

Переход от одной фазы вещества в другую сопровождается поглощением или выделением некоторого количества теплоты, которая носит название теплоты фазового перехода.

Так, для перевода элемента вещества из состояния твердого тела в жидкость ему следует сообщить количество теплоты ($delta Q$) равное:

$delta Q=lambda d m$

где $lambda$ – удельная теплота плавления, dm – элемент массы тела. При этом следует учесть, что тело должно иметь температуру, равную температуре плавления рассматриваемого вещества. При кристаллизации происходит выделение тепла равного (4).

Количество теплоты (теплота испарения), которое необходимо для перевода жидкости в пар можно найти как:

где r – удельная теплота испарения. При конденсации пара теплота выделяется. Теплота испарения равна теплоте конденсации одинаковых масс вещества.

Опыты

В заключение хотелось бы рассказать о некоторых любопытных свойствах катушек индуктивности, которые вы могли бы сами понаблюдать, имея под рукой простейшие материалы и доступные приборы. Для проведения опытов нам потребуется отрезки изолированного медного провода, ферритовый стержень и любой современный мультиметр с функцией измерения индуктивности. Вспомним, что любой проводник с током создаёт вокруг себя магнитное поле такого вида, показанное на рисунке 7.

Намотаем на ферритовый стержень четыре десятка витков провода с небольшим шагом (расстоянием между витками). Это будет катушка №1. Затем намотаем такое же количество витков с таким же шагом, но с обратным направлением намотки. Это будет катушка №2. И затем намотаем 20 витков в произвольном направлении вплотную. Это будет катушка №3. Затем аккуратно снимем их с ферритового стержня. Магнитное поле таких катушек индуктивности выглядит примерно так, кака показано на рис. 8.

Катушки индуктивности делятся в основном на два класса: с магнитным и немагнитным сердечником. На рисунке 8 показана катушка с немагнитным сердечником, роль немагнитного сердечника исполняет воздух. На рис. 9 показаны примеры катушек индуктивности с магнитным сердечником, который может быть замкнутым или разомкнутым.

Читайте так же:
Тепловой эффект электрического тока

В основном используют сердечники из феррита и пластин из электротехнической стали. Сердечники повышают индуктивность катушек в разы. В отличие от сердечников в форме цилиндра, сердечники в виде кольца (тороидальные) позволяют получить большую индуктивность, так как магнитный поток в них замкнут.

Подключим концы мультиметра, включенного в режим измерения индуктивности, к концам катушки №1. Индуктивность такой катушки чрезвычайно мала, порядка нескольких долей микрогенри, поэтому прибор ничего не показывает (рис. 10). Начнём вводить в катушку ферритовый стержень (рис. 11). Прибор показывает порядка десятка микрогенри, причем при продвижении катушки к центру стержня её индуктивность возрастает примерно в три раза (рис. 12).

По мере продвижения катушки к другому краю стержня, значение индуктивности катушки опять падает. Вывод: индуктивность катушек может регулироваться путем перемещения в них сердечника, и максимальное её значение достигается при расположении катушки на ферритовом стержне (или, наоборот, стержня в катушке) в центре. Вот мы и получили настоящий, пусть и несколько неуклюжий, вариометр. Проделав вышеописанный опыт с катушкой №2, мы получим аналогичные результаты, то есть направление намотки на индуктивность не влияет.

Уложим витки катушки №1 или №2 на ферритовом стержне поплотнее, без зазоров между витками, и снова измерим индуктивность. Она увеличилась (рис. 13).

А при растягивании катушки по стержню её индуктивность уменьшается (рис. 14). Вывод: изменяя расстояние между витками можно подстраивать индуктивность, а для максимальной индуктивности наматывать катушку надо «виток к витку». Приёмом подстройки индуктивности путём растягивания или сжатия витков частенько пользуются радиотехники, настраивая свою приёмопередающую аппаратуру на нужную частоту.

Установим на ферритовый стержень катушку №3 и измерим её индуктивность (рис. 15). Число витков уменьшилось в два раза, а индуктивность уменьшилась в четыре раза. Вывод: чем меньше количество витков — тем меньше индуктивность, и нет линейной зависимости между индуктивностью и числом витков.

голоса
Рейтинг статьи
Читайте так же:
Генераторы переменного тока синхронные генераторы для тепловозов
Ссылка на основную публикацию
Adblock
detector