Gazmarket59.ru

Газ Маркет 59
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Генераторы электрического тока из тепловой энергии

Электричество из живых растений: зеленые электростанции

Компания под названием Plant-e из Нидерландов трансформирует энергию живых зеленых растений в электрическую, которая будет использоваться в практике. Например, уже сейчас этой энергии может хватить, чтобы обеспечить работу светодиодных осветительных приборов, точек Wi-Fi и зарядки батарей мобильных электронных устройств.

Ученые не перестают заниматься самыми смелыми экспериментами в области биоэнергетики. Получение электрической энергии из живых растений – перспективное направление в этой сфере, которое позволит хотя бы отчасти решить проблему энергообеспечения отдельных регионов планеты с низким уровнем экономического развития. Компания Plant-e из Нидерландов трансформирует энергию растений в электрическую энергию, которую можно использовать в различных целях.

Энергия из ДНК

Оказалось, что органические молекулы тоже преобразуют солнечную энергию в электричество. В 2021 году немецкие ученые сумели синтезировать супрамолекулярную — то есть более сложную, чем обычная молекула — систему на основе ДНК.

Основа системы — фуллерен, «футбольный мяч» из 60 атомов углерода. К нему крепится краситель, который поглощает солнечный свет и отдает получившуюся энергию фуллерену. Но возникает проблема: если не упорядочить такие супрамолекулы, ток между ними будет протекать с трудом, а со временем и вовсе затухнет.

Ученые предложили такое решение: закрепили супрамолекулы на основе фуллеренов и красителя на спирали ДНК. Так движения электронов становятся упорядоченными, а электрический ток не затухает.

Как это применять: исследователи не обещают, что в скором времени на всех крышах появятся солнечные батареи из ДНК, но развивать это направление планируют. По их прогнозам, технология будет дешевле, прочнее и долговечнее, чем солнечные батареи на основе кремния.

Магнитогидродинамический генератор

МГД генератор – это установка преобразования тепловой энергии в электрическую, в основе которой лежит магнитогидродинамический эффект. На генераторы возлагались большие надежды, ученые в конце двадцатого столетия пытались разработать эффективные МГД генераторы промышленного исполнения, даже были построены экспериментальные образцы. Но все по непонятным причинам остановилось, видно прекратилось финансирование проектов.

Читайте так же:
Саморегулирующийся провод для теплого пола

Необходимо отдать должное ученым, которые не бросили начинания. Во всяком случае, теоретическая часть доведена до максимальной точности.

Тепловые насосы создают тепло из всего

Принцип их действия основан на циклах Карно. Говоря более простым языком, это большой холодильник, который при охлаждении окружающей среды, забирает у нее низкопотенциальную энергию и преобразовывает ее в тепло с высоким потенциалом. Окружающая среда может быть любой: земля, вода, воздух. В любое время года они содержат малую долю тепла. Устройство имеет достаточно сложное устройство и состоит из нескольких основных компонентов:

  • Наружный контур, заполненный природным теплоносителем.
  • Внутренний контур с водой.
  • Испаритель.
  • Компрессор.
  • Конденсатор.

В системе, как и в холодильнике применяют фреон. Наружный контур может быть помещен в водяную скважину или в открытый водоем. Иногда даже просто в землю закапывают этот контур, но это требует больших затрат.

Рассмотрим процесс самостоятельного изготовления теплового насоса. Первым делом необходимо раздобыть компрессор. Можно снять его с кондиционера. Достаточно будет мощности на нагрев 9,7кВт.

Вторая важная деталь – это конденсатор. Его можно сделать из обычного бака объемом 120 литров. Главное, чтобы он был не подвержен коррозии. Бак режут на две части и вставляют внутрь змеевик из меди. На выходы змеевика крепят двухдюймовые соединения для монтажа контура. Бак сваривают с помощью сварочного аппарата. Площадь змеевика нужно вычислить заранее по формуле: ПЗ = МТ/0,8РТ, где: ПЗ — площадь у змеевика; МТ — Мощность тепловой энергии, которую выдает система, кВт; 0,8 — коэффициент теплопроводности при протекании воды вокруг меди; РТ — разница между температурами воды на входе и на выходе в градусах Цельсия. Змеевик можно изготовить самостоятельно, путем наматывания трубы на любой цилиндр. Внутри него будет циркулировать фреон, а в баке вода из системы отопления. Она будет нагреваться при конденсации фреона.

Читайте так же:
Устройство провода для теплого пола

Для изготовления испарителя потребуется пластиковая тара, имеющая объем не менее 130 литров. Горловина этого бака должна быть широкой. В него тоже помещают змеевик, который будет соединен с предыдущим в единый контур через компрессор. Выход и вход испарителя делают с помощью обычной канализационной трубы. Через него будет протекать вода из водоема или скважины, которая обладает энергией, достаточной для испарения фреона.

Работает такая система следующим образом: испаритель помещается в водоем или скважину. Вода, огибая его, вызывает испарение хладагента, который поднимается по трубам из испарителя в конденсатор. Там он конденсируется, отдавая тепло окружающей змеевик воде. Эта вода циркулирует по трубам отопления с помощью центробежного насоса, обогревая помещение. Хладагент компрессором вновь отправляется в испаритель, и цикл повторяется вновь и вновь.

Рассмотренный нами агрегат способен обогреть помещение в 60 м2 в любое время года. При этом энергия берется из окружающей среды.

Электричество из воды

В наши дни электричество производят на гидроэлектростанциях, которые используют энергию движущейся воды.

Гидроэлектростанция состоит из двух основных частей: энергоблока и плотины (или дамбы), накапливающей воду. В энергоблоке расположены генераторы, вырабатывающие электрический ток. Их роторы вращаются благодаря водяным турбинам. Так энергия потока воды преобразуется в электрическую.

Что это за оборудование, его разновидности и особенности

Парогенератор для дома и бани

Для каждого из нас важен вопрос установки такого оборудования (источника электрической энергии), который бы функционировал независимо от ветра, воды, ТЭЦ, разнообразных природных катаклизмов.

Ну, конечно, чтобы и обслуживание его было доступным, и стоимость невысокой.

Для этого идеально подойдет такой автономный источник конденсации и преобразования электрики, как паровой генератор электричества.

Потери при преобразовании энергии

Преобразование энергии сопровождается потерями энергии в цепях тока, магнитных цепях, а также потерями механической энергии в результате различных форм вращательного трения. Из-за потерь значения мощности на электрическом и механическом терминалы не равны.

Читайте так же:
Тепловое реле ток нагревательного элемента

В режиме двигателя полученная механическая мощность несколько ниже, чем вложенная электрическая мощность из-за потерь на преобразование.

В режиме генератора полученная электрическая мощность несколько ниже, чем вложенная механическая мощность из-за потерь.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector