Gazmarket59.ru

Газ Маркет 59
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Как найти погрешность счетчика

СО 153-34.11.325-90 Методические указания по определению погрешности измерения активной электроэнергии при ее производстве и распределении.

МИНИСТЕРСТВО ЭНЕРГЕТИКИ И ЭЛЕКТРИФИКАЦИИ СССР

ГЛАВНОЕ НАУЧНО-ТЕХНИЧЕСКОЕ УПРАВЛЕНИЕ ЭНЕРГЕТИКИ И ЭЛЕКТРИФИКАЦИИ

МЕТОДИЧЕС К ИЕ У К АЗАН И Я
ПО ОПРЕДЕЛЕНИЮ ПОГРЕШНОСТИ ИЗМЕРЕНИЯ
А К ТИВНОЙ Э ЛЕКТРО Э НЕРГИИ
ПРИ ЕЕ ПРОИЗВОДСТВЕ И РАСПРЕДЕЛЕНИИ

РД 34.11.325-90

СО 153-34.11.325-90

Мо с ква 1991

РАЗРАБОТАНО Всесою з ным научно-исследовательским институтом электроэнергетики (В НИИЭ )

ИСПОЛНИТЕЛИ Л.А. Б И БЕР, Ю .Е. ЖДА Н О В А

УТВЕРЖДЕНО Главным научно-техническим управлением э н е ргетики и электрификации 12 . 12 . 90 г.

Заместитель начальника К.М . А Н ТИПОВ

М Е ТОДИ ЧЕ СКИ Е УКАЗАНИЯ ПО ОПРЕДЕЛЕНИЮ ПОГРЕШНОСТИ И З МЕРЕ НИЯ АКТИВНОЙ ЭЛЕ КТ РОЭНЕРГИИ ПРИ ЕЕ ПРОИЗВОДСТВЕ И РАСПРЕДЕЛЕНИИ

РД 34.11.325-90

Срок д ействия установлен

до 01 . 08 . 96 г.

Методические указания не распространяются на измерения электроэнергии с использованием линий дистанционной (телемеханической) передачи данных и с использованием информационно-измерительных с исте м.

В настоящих Методических указаниях уточнен метод расчета погрешности измерительного комплекса при определении допустимого небаланса электроэнергии, приведенный в «Инструкции по учету электроэнергии в энергосистемах». И 34 — 34 — 006 — 83 (М.: С П О С о ю зтех э нерго, 1983).

Указания предназначены для применения персоналом э н ерго п ред п рияти й и энергосистем Минэнерго СССР.

Источники погрешностей

Рассмотрим различные причины возникновения погрешностей.

Математическая модель задачи является неточной

Погрешность возникает из-за того, что сам численный метод или математическая модель является лишь приближением к точному методу (например, дифференцирование). Кроме того, любая математическая модель или метод могут внести существенные погрешности, если в ней не учтены какие-то особенности рассматриваемой задачи. Модель может прекрасно работать в одних условиях и быть совершенно неприемлемой в других. Такую погрешность называют также методической. Она всегда имеет место, даже при абсолютно точных данных и абсолютно точных вычислениях. В большинстве случаев погрешность численного метода можно уменьшить до требуемого значения за счет изменения параметров метода (например, уменьшением шага дискретизации, или увеличением количества итераций).

Ошибки в исходных данных

Исходные данные задачи часто являются основным источником погрешностей. Ошибки такого типа неизбежны и проявляются в любых реальных задачах, поскольку любое измерение может быть проведено с только какой-то предельной точностью. Вместе с погрешностями, вносимыми математической моделью, их называют неустранимыми погрешностями, поскольку они не могут быть уменьшены ни до начала решения задачи, ни в процессе ее решения.

Следует стремиться к тому, чтобы все исходные данные были примерно одинаковой точности. Сильное уточнение одних исходных данных при наличии больших погрешностей в других не приводит к повышению точности конечных результатов. Если какие-то отдельные точки данных (измерения) явно ошибочные, их можно исключить из вычислений.

Читайте так же:
Кто должен оплачивать домовой счетчик при его установке

Вычислительные ошибки (ошибки округления)

Ошибки этого типа проявляются из-за дискретной (а не непрерывной) формы представления величин в компьютере. Вычислительные ошибки можно свести к минимуму продуманно организовывая алгоритмы.

Относительная погрешность

Относительной погрешностью называют отношение абсолютной погрешности числа к самому этому числу. Чтобы рассчитать относительную погрешность в примере с учениками, разделим 26 на 374.

Получим число 0,0695, переведем в проценты и получим 6%. Относительную погрешность обозначают процентами, потому что это безразмерная величина. Относительная погрешность – это точная оценка ошибки измерений. Если взять абсолютную погрешность в 1 см при измерении длины отрезков 10 см и 10 м, то относительные погрешности будут соответственно равны 10% и 0,1%. Для отрезка длиной в 10 см погрешность в 1см очень велика, это ошибка в 10%. А для десятиметрового отрезка 1 см не имеет значения, всего 0,1%.

Различают систематические и случайные погрешности. Систематической называют ту погрешность, которая остается неизменной при повторных измерениях. Случайная погрешность возникает в результате воздействия на процесс измерения внешних факторов и может изменять свое значение.

Содержание

В зависимости от характеристик измеряемой величины для определения погрешности измерений используют различные методы.

  • Метод Корнфельда, заключается в выборе доверительного интервала в пределах от минимального до максимального результата измерений, и погрешность как половина разности между максимальным и минимальным результатом измерения:

  • Средняя квадратическая погрешность:

  • Средняя квадратическая погрешность среднего арифметического:

Электростатические КИП

Эти приборы работают на принципе взаимодействия заряженных электродов, которые разделены диэлектриком. Конструктивно они выглядят практически как плоский конденсатор. При этом, при перемещении подвижной части емкость системы также изменяется.

Наиболее известные из них – это устройства с линейным и поверхностным механизмом. У них немного разный принцип действия. У приборов с поверхностным механизмом емкость изменяется за счет колебаний активной площади электродов

В другом случае важно расстояние между ними

К достоинствам таких устройств относятся небольшая мощность потребления, класс точности ГОСТ, достаточно широкий частотный диапазон и т.д.

Недостатками являются небольшая чувствительность прибора, необходимость экранирования и пробой между электродами.

Вычисление погрешности измерений

Школьникам и студентам, выполняющим лабораторные работы, чаще всего приходится вычислять абсолютные и относительные погрешности. Делается это при помощи некоторого набора формул и определений.

Абсолютная погрешность ΔА вычисляется как разность между истинным значением величины (А) и ее приблизительным значением (Апр):

Относительная погрешность δА вычисляется как выраженное в процентах отношение абсолютной погрешности ΔА к приблизительному значению Апр:

Абсолютная инструментальная погрешность ΔиА зависит от конструкции конкретного измерительного прибора и от его класса точности. Обычно это значение указывается на шкале прибора или в его паспорте.

С помощью класса точности можно рассчитать инструментальную погрешность ΔиА, выраженную в процентах. Для этого значение класса точности нужно умножить на наибольшее значение, которое способен измерять данный прибор, и поделить результат на 100.

Читайте так же:
Как расширяется предел измерения счетчиков

То есть класс точности (обозначим его γ) связан с абсолютной инструментальной погрешностью (ΔиА) и максимальным показанием шкалы (Аmax) следующей формулой:

γ = ΔиА / Аmax • 100%.

Величины класса точности (γ) и максимально возможного показания шкалы (Аmax) можно узнать из паспорта прибора, которым будет производиться измерение. На их основе можно рассчитать абсолютную погрешность, с которой будет произведено измерение:

ΔиА = γ • Аmax / 100.

Поясним это на примере

Пусть амперметр имеет шкалу от 0 до 5 А, и на его шкале указан класс точности 0,5. Тогда инструментальная погрешность измерений при помощи такого амперметра будет:

ΔиА = 0,5 • 5 / 100 = 0,025.

Часто бывает так, что класс точности не указывают. В этом случае абсолютная инструментальная погрешность принимается такой же, как и погрешность отсчета ΔоА, которая принимается равной половине цены деления шкалы измерительного прибора.

Например, погрешность отсчета у обычной школьной линейки с миллиметровыми делениями принимается равной 0,5 мм. Если же линейка проградуирована не в миллиметрах, а, скажем, в дюймах, то погрешность отсчета ΔоА будет равна 0,5 дюймов.

Одна и та же величина, измеренная разными инструментами, будет иметь разную ошибку, и даже разное значение, так как результат необходимо округлять с той точностью, которую обеспечивает конкретная линейка.

Например, вот какие результаты мы получаем при измерении отрезка длиной 7 дюймов сначала при помощи дюймовой линейки, а затем при помощи двухдюймовой линейки.

Также точность конечного результата будет зависеть и от условий, в которых проводится измерение.

Рассмотрим решение следующей простой задачи: 25 зубочисток плотно лежат в коробочке. Ширину коробочки измерили обычной линейкой и получили значение 30 мм. Чему равна толщина одной зубочистки (толщиной стенок коробочки можно пренебречь)?

Линейка обеспечивает погрешность измерений 0,5 мм.

Толщина одной зубочистки:

l = 30 / 25 = 1,2 мм.

Погрешность измерения толщины 25 зубочисток будет 0,5 мм, значит погрешность измерения толщины одной зубочистки:

Согласно правилам в ответе мы должны привести определяемую величину с той же точностью, что и ее погрешность. Таким образом, получаем следующий ответ.

Если же инструментальная погрешность ΔиА прибора известна, то максимальная абсолютная погрешность произведенных с его помощью измерений будет равна сумме абсолютной погрешности измерений и абсолютной инструментальной. Она рассчитывается по формуле:

При расчетах абсолютную погрешность принято округлять до одной значащей цифры.

Погрешности измерений

Погрешность результата измерения (англ. error of a measurement) – отклонение результата измерения от истинного (действительного) значения измеряемой величины.
Примечания:

  • Истинное значение величины неизвестно, его применяют только в теоретических исследованиях.
  • На практике используют действительное значение величины xД ,в результате чего погрешность измерения DxИЗМ определяют по формуле: DxИЗМ = xИЗМxД , где xИЗМ – измеренное значение величины.
  • Синонимом термина погрешность измерения является термин ошибка измерения, применять который не рекомендуется как менее удачный.
Читайте так же:
Поверка счетчиков по московской области

Систематическая погрешность измерения (англ. systematic error) – составляющая погрешности результата измерения, остающаяся постоянной или закономерно изменяющаяся при повторных измерениях одной и той же физической величины.
Примечание. В зависимости от характера измерения систематические погрешности подразделяют на постоянные, прогрессивные, периодические и погрешности, изменяющиеся по сложному закону.
Постоянные погрешности — погрешности, которые длительное время сохраняют свое значение, например в течение времени выполнения всего ряда измерений. Они встречаются наиболее часто.
Прогрессивные погрешности — непрерывно возрастающие или убывающие погрешности. К ним относятся, например, погрешности вследствие износа измерительных наконечников, контактирующих с деталью при контроле ее прибором активного контроля.
Периодические погрешности — погрешности, значение которых является периодической функцией времени или перемещения указателя измерительного прибора.
Погрешности, изменяющиеся по сложному закону, происходят вследствие совместного действия нескольких систематических погрешностей.

Инструментальная погрешность измерения (англ. instrumental error) – составляющая погрешности измерения, обусловленная погрешностью применяемого средства измерений.

Погрешность метода измерений (англ. error of method) – составляющая систематической погрешности измерений, обусловленная несовершенством принятого метода измерений.
Примечания:

  • Вследствие упрощений, принятых в уравнениях для измерений, нередко возникают существенные погрешности, для компенсации действия которых следует вводить поправки. Погрешность метода иногда называют теоретической погрешностью.
  • Иногда погрешность метода может проявляться как случайная.

Погрешность (измерения) из-за изменений условий измерения – составляющая систематической погрешности измерения, являющаяся следствием неучтенного влияния отклонения в одну сторону какого-либо из параметров, характеризующих условия измерений, от установленного значения.
Примечание. Этот термин применяют в случае неучтенного или недостаточно учтенного действия той или иной влияющей величины (температуры, атмосферного давления, влажности воздуха, напряженности магнитного поля, вибрации и др.); неправильной установки средств измерений, нарушения правил их взаимного расположения и др.

Субъективная погрешность измерения – составляющая систематической погрешности измерений, обусловленная индивидуальными особенностями оператора.
Примечания:

  • Встречаются операторы, которые систематически опаздывают (или опережают) снимать отсчеты показаний средств измерений.
  • Иногда субъективную погрешность называют личной погрешностью или личной разностью.

Неисключенная систематическая погрешность – составляющая погрешности результата измерений, обусловленная погрешностями вычисления и введения поправок на влияние систематических погрешностей или систематической погрешностью, поправка на действие которой не введена вследствие ее малости.
Примечания:

  • 1. Иногда этот вид погрешности называют неисключенный (ые) остаток (остатки) систематической погрешности.
  • 2. Неисключенная систематическая погрешность характеризуется ее границами. Границы неисключенной систематической погрешности θ при числе слагаемых N≤3 вычисляют по формуле:

Случайная погрешность измерения (англ. random error) – составляющая погрешности результата измерения, изменяющаяся случайным образом (по знаку и значению) при повторных измерениях, проведенных с одинаковой тщательностью, одной и той же физической величины.

Абсолютная погрешность измерения (англ. absolute error of a measurement) – погрешность измерения, выраженная в единицах измеряемой величины.

Абсолютное значение погрешности (англ. absolute value of an error) – значение погрешности без учета ее знака (модуль погрешности).
Примечание. Необходимо различать термины абсолютная погрешность и абсолютное значение погрешности.

Относительная погрешность измерения (англ. relative error) – погрешность измерения, выраженная отношением абсолютной погрешности измерения к действительному или измеренному значению измеряемой величины.
Примечание. Относительную погрешность в долях или процентах находят из отношений:

Рассеяние результатов в ряду измерений (англ. dispersion) – несовпадение результатов измерений одной и той же величины в ряду равноточных измерений, как правило, обусловленное действием случайных погрешностей.
Примечания:

  • Количественную оценку рассеяния результатов в ряду измерений вследствие действия случайных погрешностей обычно получают после введения поправок на действие систематических погрешностей.
  • Оценками рассеяния результатов в ряду измерений могут быть: — размах, — среднее квадратическое отклонение (экспериментальное среднее квадратическое отклонение), — доверительные границы погрешности (доверительная граница). (в ред. Изменения N 2, введенного Приказом Росстандарта от 04.08.2010 N 203-ст)

Размах результатов измерений (англ. ) – оценка Rn рассеяния результатов единичных измерений физической n величины, образующих ряд (или выборку из n измерений), вычисляемая по формуле:

Среднее квадратическое отклонение результатов единичных измерений в ряду измерений (англ. experimental (sample) standard deviation) – характеристика S рассеяния результатов измерений в ряду равноточных измерений одной и той же физической величины, вычисляемая по формуле:

Среднее квадратическое отклонение среднего арифметического значения результатов измерений (англ. experimental (sample) standard deviation) – характеристика Sx рассеяния среднего арифметического значения результатов равноточных измерений одной и той же величины, вычисляемая по формуле:

Доверительные границы погрешности результата измерений – наибольшее и наименьшее значения погрешности измерений, ограничивающие интервал, внутри которого с заданной вероятностью находится искомое (истинное) значение погрешности результата измерений.

Поправка (англ. correction) – значение величины, вводимое в неисправленный результат измерения с целью исключения составляющих систематической погрешности.
Примечание. Знак поправки противоположен знаку погрешности. Поправку, прибавляемую к номинальному значению меры, называют поправкой к значению меры; поправку, вводимую в показание измерительного прибора, называют поправкой к показанию прибора.

Поправочный множитель (англ. correction factor) – числовой коэффициент, на который умножают неисправленный результат измерения с целью исключения влияния систематической погрешности.
Примечание. Поправочный множитель используют в случаях, когда систематическая погрешность пропорциональна значению величины.

Точность результата измерений (англ. accuracy of measurement) – одна из характеристик качества измерения, отражающая близость к нулю погрешности результата измерения.
Примечание. Считают, что чем меньше погрешность измерения, тем больше его точность.

Неопределенность измерений (англ. uncertainty of measurement) – параметр, связанный с результатом измерений и характеризующий рассеяние значений, которые можно приписать измеряемой величине.

Погрешность метода поверки – погрешность применяемого метода передачи размера единицы при поверке.

Погрешность градуировки средства измерений – погрешность действительного значения величины, приписанного той или иной отметке шкалы средства измерений в результате градуировки.

Погрешность воспроизведения единицы физической величины – погрешность результата измерений, выполняемых при воспроизведении единицы физической величины.
Примечание. Погрешность воспроизведения единицы при помощи государственных эталонов обычно указывают в виде ее составляющих: неисключенной систематической погрешности; случайной погрешности; нестабильности за год.

Погрешность передачи размера единицы физической величины – погрешность результата измерений, выполняемых при передаче размера единицы.
Примечание. В погрешность передачи размера единицы входят как неисключенные систематические, так и случайные погрешности метода и средств измерений.

Статическая погрешность измерений – погрешность результата измерений, свойственная условиям статического измерения.

Динамическая погрешность измерений – погрешность результата измерений, свойственная условиям динамического измерения.

Промах – погрешность результата отдельного измерения, входящего в ряд измерений, которая для данных условий резко отличается от остальных результатов этого ряда.
Примечание. Иногда вместо термина промах применяют термин грубая погрешность измерений.

Предельная погрешность измерения в ряду измерений – максимальная погрешность измерения (плюс, минус), допускаемая для данной измерительной задачи.

Погрешность результата однократного измерения – погрешность одного измерения (не входящего в ряд измерений), оцениваемая на основании известных погрешностей средства и метода измерений в данных условиях (измерений).
Пример. При однократном измерении микрометром какого-либо размера детали получено значение величины, равное 12,55 мм. При этом еще до измерения известно, что погрешность микрометра в данном диапазоне составляет +/- 0,01 мм, и погрешность метода (непосредственной оценки) в данном случае принята равной нулю. Следовательно, погрешность полученного результата будет равна +/- 0,01 мм в данных условиях измерений.

Суммарное среднее квадратическое отклонение среднего арифметического значения результатов измерений – характеристика S рассеяния среднего арифметического результатов измерений, обусловленная влиянием случайных и неисключенных систематических погрешностей и вычисляемая по формуле:

где: — СКО неисключенных систематических погрешностей при равномерном распределении каждой из них.

Правила подсчета погрешностей

Для номинальной оценки погрешностей существует несколько правил:

  • при сложении и вычитании чисел необходимо складывать их абсолютные погрешности;
  • при делении и умножении чисел требуется сложить относительные погрешности;
  • при возведении в степень относительную погрешность умножают на показатель степени.

Приближенные и точные числа записываются при помощи десятичных дробей. Берется только среднее значение, поскольку точное может быть бесконечно длинным. Чтобы понять, как записывать эти числа, необходимо узнать о верных и сомнительных цифрах.

Верными называются такие цифры, разряд которых превосходит абсолютную погрешность числа. Если же разряд цифры меньше абсолютной погрешности, она называется сомнительной. Например, для дроби 3,6714 с погрешностью 0,002 верными будут цифры 3,6,7, а сомнительными – 1 и 4. В записи приближенного числа оставляют только верные цифры. Дробь в этом случае будет выглядеть таким образом – 3,67.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector