Gazmarket59.ru

Газ Маркет 59
41 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Как по векторной диаграмме определить правильность подключения счетчика

Монтаж и эксплуатация счетчиков — Проверка правильности включения счетчика

Важно понимать, что сделать вывод о правильности включения счетчика можно тогда, когда векторная диаграмма, снятая на его зажимах, будет полностью совпадать с нормальной.

Для того чтобы можно было правильно и качественно провести эту работу, нужно будет выполнить правильность вторичных цепей трансформатора. Естественно выполнить подобную работу, человек, у которого нет опыта в этой сфере, не сможет.

А тот, кто будет ее выполнять, должен понимать, что в сети Интернета находится большое количество формул и схем, которые готовы помочь вам в оказании данной процедуры. Ознакомившись с ними, вы сможете без особых проблем провести эту работу быстро и качественно.

Вообще нужно отметить, что проверка правильности включения счетчиков будет, состоят из двух этапов: в первую очередь нужно будет тщательным образом проверить цепь напряжения и цепи тока, провести снятие векторной диаграммы.

После этого необходимо проверить вторичную цепь трансформатора напряжения. И этому моменту необходимо уделять особо пристальное внимание, только так можно будет достичь желаемого результата.

Вы должны проверить правильность маркировки фаз. Важно также не забывать о том, что данная проверка должна в обязательном порядке проходить под рабочим напряжением, измерение тока без разрыва проверяемой цепи, и этому моменту нужно уделить как можно больше внимания.

Пример технического отчета

Снятие векторных диаграмм – основное назначение приборов ВАФ

В новом приборе учтены все особенности проведения измерений в энергетике. При разработке вольтамперфазометра РЕТОМЕТР-М2 специалисты НПП «Динамика» проанализировали опыт эксплуатации ранее выпускавшегося прибора РЕТОМЕТР. При этом выяснился любопытный факт: многие релейщики до сих пор предпочитают работать с вольтамперфазометрами (ВАФ) предыдущих поколений, хотя имеют в арсенале современные микропроцессорные измерительные приборы с более высокой точностью и чувствительностью. Возможно, они не доверяют полученной информации. Попробуем разобраться в этом вопросе.
Приборы типа ВАФ предназначены для получения достоверной информации о параметрах электроэнергии, их основная задача – «правильно» измерить напряжение, ток, фазовый угол и частоту. Что значит «правильно»? Многие производители в выпускаемых приборах для измерения значений напряжения и тока применяют метод прямой дискретизации (так называемый RMS), который позволяет повысить точность и увеличить скорость измерения переменного тока для сигналов, лежащих в пределах полосы пропускания. А вот с измерением угла сдвига фазы, основной функцией ВАФ, все не так однозначно.

Релейщики используют ВАФ для определения порядка следования фаз и снятия векторных диаграмм. Эти данные необходимы для проверки правильности выполнения схем: • дифференциальных токовых защит (измерение векторов тока); • дистанционных защит, счетчиков электроэнергии, ваттметров и др. (измерение векторов фазных токов и напряжений); • реле мощности в токовых направленных защитах нулевой последовательности (измерение векторов тока 3I0 и напряжения 3U0); • автоматических систем синхронизации, регуляторов напряжения и т. д. (измерение векторов напряжений).

Ранее для этих целей использовались фазометры Д578 и ВАФ-85М. Сегодня релейщики по‑прежнему доверяют информации, полученной с помощью этих фазометров. Одна из причин в том, что эти приборы выполнены по принципу электродинамического логометра и предназначены для определения угла сдвига фаз между основными гармоническими составляющими тока и напряжения в однофазных цепях переменного тока частоты 50 Гц. Многие современные приборы типа ВАФ, в том числе и РЕТОМЕТР, измеряют фазовый угол в широкой полосе частот. На наш взгляд, этот факт и может расцениваться специалистами как самый большой «минус» этих приборов. Но так ли это?

В энергетике принято считать, что форма сигналов тока и напряжения – синусоидальная, поэтому при использовании любого метода измерения угла результат должен быть один и тот же, но на практике это не совсем так. Наличие высших гармоник может достаточно сильно исказить форму сигнала, что влияет на величину фазового угла. Разница между исходным сигналом и сигналом основной частоты может быть достаточно существенна. Например, наличие третьей гармоники, которая составляет 10 процентов от величины основного сигнала и сдвинута относительно него на 120 градусов, дает смещение точки перехода через ноль более чем на 5 градусов (см. рис. 1), при этом вектора всех трех фаз смещаются в одну сторону. Таким образом, векторная диаграмма, которая снимается по исходному сигналу, оказывается недостоверной: во‑первых, она сдвинута относительно основной частоты, а во‑вторых, углы между векторами не равны 120 градусам. Кроме того, когда уровень высших гармоник сопоставим или преобладает над уровнем основного сигнала, измерение угла становится невозможным – слишком много переходов через ноль.

Читайте так же:
Счетчик mail ru код счетчика

Для примера рассмотрим тяговую подстанцию железной дороги, где электропоезд является основным, а часто и единственным потребителем электроэнергии. Попытка снять векторную диаграмму при его движении обычно обречена на провал из‑за огромной несимметрии нагрузки и наличия высших гармоник в тяговом токе и в устройствах компенсации реактивной мощности. Количество переходов сигнала через ноль резко возрастает, а его полупериоды имеют разную длительность.

На генерирующих предприятиях также существуют определенные проблемы при снятии векторных диаграмм на трансформаторах собственных нужд, где из‑за сильного влияния несимметрии тока в силовых трансформаторах третья гармоника может быть достаточно большой.

Специалистами НПП «Динамика» был учтен этот факт при разработке нового прибора РЕТОМЕТР-М2, в котором изменилась концепция работы фазометра, – теперь он работает только на частоте 50 Гц и измеряет угол сдвига фаз между основными гармоническими составляющими тока и напряжения. В аппаратной части реализован метод прямой дискретизации входного сигнала. Цифровой фильтр на 50 Гц выделяет из входных выборок первую гармонику. Далее, в соответствии с внутренней системой координат, проводится разложение на ортогональные составляющие, вычисляются вектора и находится угловая разница между опорным и измеряемым векторами. Таким образом, РЕТОМЕТР-М2 выполняет измерения аналогично Д578 или ВАФ-85М и показывает истинную векторную диаграмму как при синусоидальном, так и при искаженном сигнале, поскольку в обоих случаях исключается влияние высших гармоник.

Кроме этого, в приборе повышена точность измерения угла и расширен диапазон его измерения как по току, так и по напряжению. На практике это означает, что при измерении тока или напряжения можно измерить и фазовый угол. Базовая точность фазометра достигла 0,5 электрических градусов, а при наихудших условиях и малых уровнях сигналов абсолютная погрешность не превышает четырех электрических градусов, и это с учетом погрешности токовых клещей, составляющей львиную долю в погрешности измерения угла по току.

Решая задачу повышения точности измерения угла, были улучшены и другие параметры: диапазон по току расширился от миллиампер до 40 А с базовой точностью 1 %, диапазон по напряжению – до 750 В с базовой точностью 0,5 %. В области малых токов абсолютная погрешность не превышает ±3 мА, а абсолютная погрешность измерения промышленной частоты составляет не более ±0,01 Гц.

При проведении измерений с помощью любого однофазного прибора существует еще одна проблема – одновременное измерение всех векторов. Энергосистема ведет себя как живой организм, в ней постоянно происходят изменения параметров, и при последовательно проводимых измерениях появляются и накапливаются погрешности, связанные с этими изменениями. Для решения этой задачи в РЕТОМЕТРе-М2 были созданы одновременно работающие три канала тока и три канала напряжения, при этом специальная кнопка «Hold» позволяет «заморозить» показания на индикаторе для их дальнейшего анализа. Все это позволяет быстро и с минимальными временными погрешностями представить параметры векторов тока и напряжения, в том числе прямую, обратную и нулевую составляющие трехфазного тока и напряжения, а также трехфазный коэффициент мощности.

Вместе с тем, в приборе была сохранена возможность работы в двухканальном режиме, то есть одновременно измерять ток и напряжение, два напряжения или два тока. Это позволяет получить информацию об активной, реактивной и полной мощности, о косинусе и тангенсе угла, данные о коэффициенте трансформации, линейном напряжении, комплексные параметры сопротивления нагрузки, выполнить измерение постоянного напряжения и т. д.

Специалисты НПП «Динамика» надеются, что все эти возможности будут востребованы при выполнении пусконаладочных и проверочных работ, и РЕТОМЕТР-М2 станет незаменимым помощником для специалистов служб релейной защиты и автоматики энергопредприятий, службы главного энергетика промышленных предприятий и многих других специалистов, занятых эксплуатацией электроустановок.

Разновидности векторных диаграмм

Для корректного отображения переменных величин, которые определяют функциональность радиотехнических устройств, хорошо подходит векторная графика. Подразумевается соответствующее изменение основных параметров сигнала по стандартной синусоидальной (косинусоидальной) кривой. Для наглядного представления процесса гармоническое колебание представляют, как проекцию вектора на координатную ось.

С применением типовых формул несложно рассчитать длину, которая получится равной амплитуде в определенный момент времени. Угол наклона будет показывать фазу. Суммарные влияния и соответствующие изменения векторов подчиняются обычным правилам геометрии.

Читайте так же:
Инструкция по эксплуатации счетчика дельта

Различают качественные и точные диаграммы. Первые применяют для учета взаимных связей. Они помогают сделать предварительную оценку либо используются для полноценной замены вычислений. Другие создают с учетом полученных результатов, которые определяют размеры и направленность отдельных векторов.


Круговая диаграмма

Допустим, что надо изучить изменение параметров тока в цепи при разных значениях сопротивления резистора в диапазоне от нуля до бесконечности. В этой схеме напряжение на выходе (U) будет равно сумме значений (UR и UL) на каждом из элементов. Индуктивный характер второй величины подразумевает перпендикулярное взаимное расположение, что хорошо видно на части рисунка б). Образованные треугольники отлично вписываются в сегмент окружности 180 градусов. Эта кривая соответствует всем возможным точкам, через которые проходит конец вектора UR при соответствующем изменении электрического сопротивления. Вторая диаграмма в) демонстрирует отставание тока по фазе на угол 90°.


Линейная диаграмма

Здесь изображен двухполюсный элемент с активной и реактивной составляющими проводимости (G и jB, соответственно). Аналогичными параметрами обладает классический колебательный контур, созданный с применением параллельной схемы. Отмеченные выше параметры можно изобразить векторами, которые расположены постоянно под углом 90°. Изменение реактивной компоненты сопровождается перемещением вектора тока (I1…I3). Образованная линия располагается перпендикулярно U и на расстоянии Ia от нулевой точки оси координат.

Механика; гармонический осциллятор

  • Гармонический осциллятор в механике и гармонический осциллятор любой природы формально представляют точную аналогию, поэтому рассмотрим их в одном параграфе на примере механического гармонического осциллятора.
  • Применение векторных диаграмм в механике сводится в основном к случаю гармонического осциллятора (в том числе имеется в виду и случай осциллятора с линейной по скорости силой трения); впрочем, векторные диаграммы могут быть до некоторой степени полезны и для исследования нескольких осцилляторов в том числе и в пределе бесконечного их количества (для колебаний или волн в распределенных системах).
  • С современной точки зрения применение векторных диаграмм к гармоническому осциллятору представляет скорее только исторический и педагогический интерес, однако тем не менее в принципе они здесь вполне применимы.
  • В механике применение векторных диаграмм (обычно подразумевается их применение к одномерному осциллятору) имеет ту особенность, что добавляющаяся вторая координата для превращения колебаний во вращение может иметь не только чисто формальный абстрактный смысл, но для одномерной механической системы такого сорта может быть указана механическая же двумерная система, для которой векторная диаграмма первой реализуется как вполне реальное двумерное механическое движение, и все векторы реально двумерны (а после проецирования всех их и движения точки двумерной системы на одну ось, мы получаем мгновенные значения соответствующих величин – в том числе положения – для соответствующей одномерной системы); таким образом, для механической одномерной системы возможна не только формальная математическая, но и реальная механическая
    модель, переводящая колебательное одномерное движение во вращательное движение в двумерном пространстве, реализующая в себе векторную диаграмму для одномерной системы.

Разберем два основных случая простого применения векторных диаграмм в механике (как замечено выше, также применимых к гармоническому осциллятору не только механической, но любой природы): осциллятор без затухания и без внешней силы и осциллятор с (линейным) затуханием (вязкостью), и внешней вынуждающей силой.

Представление синусоидальных функций в виде комплексных чисел

Векторная диаграмма – это удобный инструмент представления синусоидальных функций времени, коими являются, к примеру, напряжения и токи электрической цепи переменного тока.

Рассмотрим, например, произвольный ток, представленный в виде синусоидальной функции

i(t) = 10 sin(ωt + 30°).

Данный синусоидальный сигнал можно представить в виде комплексной величины

Для формирования комплексного числа используются модуль и фаза синусоидального сигнала.

Векторная диаграмма при последовательном соединении элементов

Для построения векторных диаграмм сперва составляют уравнения по законам Кирхгофа для рассматриваемой электрической цепи.

Рассмотрим электрическую цепь, представленную на рис. 1, и нарисуем для неё векторную диаграмму напряжений. Обозначим падение напряжение на элементах.


Рис. 1. Последовательное соединение элементов цепи

Составим уравнение для данной цепи по второму закону Кирхгофа:

По закону Ома падение напряжений на элементах определяется по следующим выражениям:

Для построения векторной диаграммы необходимо отобразить приведённые в уравнении слагаемые на комплексной плоскости. Обычно вектора токов и напряжений отображаются в своих масштабах: отдельно для напряжений и отдельно для токов.

Читайте так же:
Пиковые зона для трехтарифного счетчика

Из курса математики известно, что j = 1∠90°, −j = 1∠−90°. Отсюда при построении векторной диаграммы умножение какого-либо вектора на мнимую единицу j приводит к повороту этого вектора на 90 градусов против часовой стрелки, а умножение на −j приводит к повороту этого вектора на 90 градусов по часовой стрелке.

При построении векторной диаграммы напряжений на комплексной плоскости сперва отобразим вектор тока I, после чего относительного него будем отображать вектора падений напряжений (рис. 2) с учётом приведённых выше соотношений для мнимой единицы.

Падение напряжения на резисторе UR совпадает по направлению с током I (т.к. UR = I ∙ R, а R – чисто действительная величина или, простыми словами, нет умножения на мнимую единицу). Падение напряжения на индуктивном сопротивлении опережает вектор тока на 90° (т.к. UL = I ∙ jXL, а умножение на j приводит повороту этого вектора на 90° против часовой стрелки). Падение напряжения на ёмкостном сопротивлении отстаёт от вектора тока на 90° (т.к. UC = −I ∙ jXC, а умножение на −j приводит повороту этого вектора на 90° по часовой стрелке).

Рис. 2. Векторная диаграмма напряжений при последовательном соединении элементов цепи Следует обратить внимание, что на одной векторной диаграмме изображают только векторы тех величин, у которых частота совпадает!

Векторная диаграмма при параллельном соединении элементов

Рассмотрим электрическую цепь, представленную на рис. 3, и нарисуем для неё векторную диаграмму токов. Обозначим направление токов в ветвях.


Рис. 3. Параллельное соединение элементов цепи

Составим уравнение для данной цепи по первому закону Кирхгофа:

I­­ – IR – IL – IC = 0,

Определим по закону Ома токи в ветвях по следующим выражениям, учитывая, что 1 / j = −j:

IL = E / (jXL) = −j ∙ E / XL,

IC = E / (−jXC) = j ∙ E / XC,

Для построения векторной диаграммы необходимо отобразить приведённые в уравнении слагаемые на комплексной плоскости.

При построении векторной диаграммы токов на комплексной плоскости сперва отобразим вектор ЭДС E, после чего относительного него будем отображать вектора токов токов (рис. 4) с учётом приведённых выше соотношений для мнимой единицы.

Ток в резисторе IR совпадает по направлению с ЭДС E (т.к. IR = E / R, а R – чисто действительная величина или, простыми словами, нет умножения на мнимую единицу). Ток в индуктивном сопротивлении отстаёт от вектора ЭДС на 90° (т.к. IL = −j ∙ E / XL, а умножение на −j приводит повороту этого вектора на 90° по часовой стрелки). Ток в ёмкостном сопротивлении опережает вектор ЭДС на 90° (т.к. IC = j ∙ E / XC, а умножение на j приводит повороту этого вектора на 90° против часовой стрелки). Результирующий вектор тока определяется после геометрического сложения всех векторов по правилу параллелограмма.

Рис. 4. Векторная диаграмма токов при параллельном соединении элементов цепи

Для произвольной цепи алгоритм построения векторных диаграмм аналогичен вышеизложенному с учётом протекаемых в ветвях токов и прикладываемых напряжений.

Обращаем ваше внимание, что на сайте представлен инструмент для построения векторных диаграмм онлайн для трёхфазных цепей.

Начнем с классификации

Как и любой электроприбор, подобрать трансформатор можно по параметрам и установочным характеристикам:

  • Назначение: измерительный, управляющие и лабораторные. Нас интересует, как подключить измерительный вариант.
  • Номинальное напряжение первичной обмотки, один из основных параметров: до 1000 В или свыше 1000 В.
  • Конструкция первичной обмотки. Одновитковые, многовитковые, стержневые, шинные, катушечные. От конструкции первички зависит способ монтажа.
  • Способ установки: трансформаторы могут встраиваться в электроустановку, накладываться на силовые шины, монтироваться в распределительные шкафы или трансформаторные подстанции. Кроме того, существуют переносные приборы для организации контроля или временного учета электроэнергии.
  • Тип монтажа: в зависимости от выбранного способа установки и подключения, монтаж может быть проходным или опорным. На иллюстрации проходной тип монтажа.
  • Количество ступеней трансформации. При работе с высоким напряжением, может потребоваться каскадное снижение выходных параметров. При этом можно выбирать, куда подключать измерительные (управляющие) приборы: на один или несколько каскадов трансформации.
  • Тип изоляции между обмотками и сердечником. Как и в обычных трансформаторах: сухая (керамика, бакелит, некоторые виды пластмасс) или мокрая (классическая бумажно-маслянная). Современные компактные трансформаторы заливаются компаундом. Параметр учитывается при выборе температурного режима эксплуатации: высокий нагрев или наружная установка при минусовых температурах.

Важно: При подключении 3 фазного счетчика через трансформаторы тока, параметры всех приборов должны быть идентичными.

Разновидности векторных диаграмм

Любую характеристику электротехнической цепи, изменяющуюся по синусоидальному или косинусоидальному принципу, можно отобразить посредством точки на поверхности, в соответствующей системе величин. В качестве размерности по оси Х выступает действительный компонент параметра, по оси Y размещается воображаемая составляющая. Именно такие составляющие входят в алгебраическую модель записи комплексной величины. Последующее соединение точки на поверхности и нулевой точки системы координат позволит рассматривать эту прямую и ее угол с действительной осью как изображение комплексного числа. На практике положительно направленный отрезок принято называть вектором.

Читайте так же:
Номер такси без счетчика

Векторной диаграммой принято называть множество положительно направленных отрезков на комплексной поверхности, которая соответствует комплексным значениям и параметрам гальванической цепи и их взаимосвязям. По своему характеру векторные диаграммы подразделяются на:

  • Точные гистограммы;
  • Качественные гистограммы.

Особенностями достоверных гистограмм является соблюдение пропорций всех характеристик и параметров, полученных путем вычислений. Данные диаграммы находят свое применение в проверке ранее проведенных расчетов. В основе использования качественных гистограмм лежит учет взаимного влияния характеристик друг на друга, и в основном они предшествуют расчетам либо заменяют их.

Векторные диаграммы токов и напряжений визуально отображают процесс достижения цели по расчету электротехнической цепи. При соблюдении всех правил по построению векторных отрезков можно просто из гистограммы установить фазы и амплитуды вещественных характеристик. Построение качественных гистограмм поможет контролировать правильный процесс решения задачи и с легкостью определить сектор с определяемыми векторами. В зависимости от особенностей построения, графические диаграммы делятся на такие типы:

  1. Круговая диаграмма, представляющая собой графическую гистограмму, образованную вектором, описывающим своим концом круг или полукруг, при любых изменениях характеристик цепи;
  2. Линейная диаграмма, представляющая собой графический рисунок в виде прямой линии, образованной вектором, посредством изменения характеристик цепи.

Как подсчитать отклонения в измерениях в домашних условиях

Если счетчик исправен, но счета приходят слишком большие, возможно, энергию кто-то ворует

Чтобы не обращаться к услугам специалистов, можно воспользоваться несколькими простыми и доступными способами проверки электросчетчика с помощью недорогих инструментов и приспособлений.

Проверка при помощи тестера

Методика обследования счетчика тестером полностью аналогична работе с токоизмерительными клещами. Разница состоит в точности полученных результатов. Чтобы свести погрешность измерений к минимуму, следует потратить в 10 раз больше времени на замеры, введя во все предварительные и окончательные расчеты этот коэффициент.

Лампы накаливания

Узнать точность показаний прибора учета можно с помощью лампы накаливания мощностью 100 Вт. необходимым условием для испытаний является отключение всех потребителей. Записываются показания, после чего лампа подключается к сети на 1 час. По окончании снимаются новые показания. Они должны увеличиться на 100 Вт с допустимой погрешностью 10 %.

Особенности проверки трехфазного счетчика

На трехфазных счетчиках замеры производятся поочередно на всех фазах. После этого подсчитывается мощность по каждой, сумма показателей дает итоговый результат реальной и демонстрируемой мощности.

Воровство электроэнергии не является редкостью. Подсоединиться к чужой линии может разбирающийся в электричестве и имеющий доступ к щитку человек. Начать следует с наблюдения за устройством при отключенных по всей квартире потребителях. Если при отсутствии самохода прибор показывает нагрузку, имеет место хищение энергии. Можно осмотреть щиток самостоятельно, но лучше это сделать в присутствии представителей ресурсоснабжающей организации.

Инструкция по эксплуатации

Чтобы разобраться с применением фазометра, главное внимание уделяется инструкции по эксплуатации (входит в комплект с устройством). Перед началом работы требуется сделать несколько шагов.

Для начала стоит убедиться, что условия работы соответствуют тем, что рекомендует производитель, а частотный диапазон находится в соответствии с метрологическими характеристиками. После этого собирается сама схема.

Эксплуатация фазометра выполняется по такому алгоритму:

  • Сначала требуется прочесть инструкцию, которая идет вместе с изделием. В документе раскрываются нюансы и правила применения прибора.
  • С помощью корректора выставляется стрелка на 0-ой отметке.
  • Убедитесь, что кнопки не сработаны.
  • Подключите пробники на входе к требуемым разъемам.
  • Нажмите клавишу, которая подает питание на устройство. Обратите внимание на загорание специального индикатора.
  • Выждите некоторое время, чтобы прибор хорошо прогрелся. Это необходимо, чтобы добиться максимальной точности измерений. В среднем выдержка по времени должна составлять около 10-15 минут.
  • Найдите напряжение на входе.
  • Жмите на клавишу в зависимости от выбора внешнего напряжения и установите требуемый частотный диапазон.
  • Жмите «>0 Популярные модели на рынке

Рассмотрим несколько моделей фазометров, которые пользуются наибольшим спросом сегодня.

Фазометры Д5721 и Д5782

Применяются для работы в 1-фазных цепях переменного тока с частотой 50 (60) Герц и позволяют измерить смещение фаз между гармоническими составляющими тока и напряжения.

Прибор имеет высокий класс точности (0,5), позволяет измерять углы в диапазоне от 0 до 360 градусов. Вес прибора не больше 6,5 кг, а размеры — 23*28*14 см.

Мегеон 40850

Эта модель фазоуказателя относится к категории портативных (компактных) приборов, позволяющих с высокой скоростью и точностью выполнять измерения.

Для диагностики правильности чередования фаз или наличия ошибок применяются светодиоды, установленные на передней панели. Также имеется встроенный зуммер.

Плюсы Мегеона 490850 заключается в готовности к работе и соответствии 2-му классу безопасности. В процессе измерения применяются «крокодилы» (идут в комплекте), что упрощает процесс пользования прибором.

В комплектацию входит сам прибор, зажимы «крокодил» (3 ед.), запястный ремешок (3 ед.), инструкция по эксплуатации, а также чехол для хранения и перевозки прибора.

Масса брутто изделия всего 810 грамм, а размеры коробки — 15*10*15 см. Прибор производит измерения при напряжении от 200 до 400 В. Уровень защиты IP65. Оптимальная рабочая температура от -10 до +40 градусов Цельсия.

Ц302 — трехфазный фазометр

Главное назначение фазометра Ц302 в том, что с его помощью можно быстро и точно измерить коэффициент «фи» в переменной сети. Частота тока может быть различной — от 50 до 10 тысяч Гц. Размеры прибора 12*12*9,5 см, класс точности — 2,5.

Рассматриваемая модель отличается повышенной стойкостью к ударам и вибрациям. Принцип действия измерителя построен на преобразовании входного синусоидального сигнала в прямоугольные импульсы с последующим преобразованием в постоянный ток.

Параметр I зависит от угла фазного сдвига. В состав Ц302 входит электрический измеритель и индикатор магнитоэлектрической системы.

Фазометр Э35000

Задача этого оборудования заключается в том, чтобы убедиться в корректности работы фазометров Д578 и Д5782.

Кроме того, изделие применяется для проведения измерений в различных цепях с высоким классом точности, составляющим 0,2 (в случае применения без трансформатора).

Работа изделия базируется на основе сравнения полученного угла разности между первоначальными параметрами фаз искажения напряжения и тока с заданным показателем. Погрешность модели составляет до 0,1%. Габариты — 23*28*14 см. Вес 7 кг.

Фазометр Д5000

Модель Д5000 применяется для определения точности однофазных фазометров, работающих на частоте, равной 50 Гц. Этот тип измерительного устройства часто монтируется в схемы с разделенными токовыми и напряженческими цепями.

Номинальный ток и напряжение прибора — 5 и 10 А, а также 100, 127 и 220 В соответственно. Мощность потребления при последовательном/параллельном подсоединении 5 и 8 Ампер соответственно. Внешне похож на предыдущий прибор.

Однофазный фазометр С302-М1

Модель С302-М1 примеряется для измерения коэффициента мощности в 3-фазной сети переменного тока, имеющего частоту 50 Гц. Главным условием считается симметрия линейных напряжений, а также симметрия нагрузки фаз.

Конструктивно прибор состоит из преобразователя электронного типа, а также индикатора магнитоэлектрической системы (оба элемента находятся в одном корпусе).

Фазометр Ц42305

Модель фазоизмерительного устройства Ц42305 используется для измерения коэффициента мощности в 3-х фазных сетях с номинальной частотой в 50 Гц при условии симметричной нагрузки и наличии симметрии линейных U.

В основе устройства входит электронное устройство, которое преобразовывает входной сигнал, а также магнитоэлектрический элемент.

Класс точности модели составляет 2,5. Номинальное напряжение (220, 100, 380 или 127 В). Подключение осуществляется непосредственно через ТТ или ТН.

Фазометр Ц42309

Измеритель Ц42309 применяется для вычисления точного коэффициента мощности в 3-фазных сетях переменного тока. Принцип действия построен на работе преобразователя электронного типа, который принимает входные сигналы и преобразовывает их постоянный ток.

Класс точности прибора составляет 2,5. Номинальные напряжения — 220, 100, 380 или 127 В.

Прочие модели

Кроме рассмотренных выше фазометров, стоит выделить еще ряд моделей — фазометры PIC144A, FTZ144 500V, FEMC144 110V, FEMC96 100/v3, FEMC96 100V FTZ96 230V, FEMC96 100V и другие.

Важность фазометров сложно переоценить. С помощью этого прибора удается точно измерить коэффициент «фи». Этот параметр показывает наличие реактивной составляющей в сети.

По результатам измерения специалистами принимают решение о необходимости коррекции коэффициента мощности и общем характере нагрузки.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector