Gazmarket59.ru

Газ Маркет 59
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Методика измерений турбинным счетчиком

МЕТОДИКА ИЗМЕРЕНИЯ ДЛЯ КОМПЛЕКСОВ ИЗМЕРЕНИЯ ОБЪЕМА ГАЗА С ДИАФРАГМЕННЫМИ СЧЕТЧИКАМИ. МЕТРОЛОГИЧЕСКИЕ И ПРАКТИЧЕСКИЕ ВОПРОСЫ ЕЕ ПРИМЕНЕНИЯ

В соответствии со структурой системы газоснабжения и учета газа большое количество узлов учета газа применяется на третьем уровне, когда значение рабочих расходов газа не превышает 100 м3/ч, а значение давления не превышает 0,005 МПа (рис. 1)

В эту группу попадают коллективные узлы учета газа, применяемые для коммерческих и технологических нужд, например подомовые и кустовые узлы учета, узлы учета у небольших коммунальных потребителей, а также индивидуальные приборы учета у частных лиц.

В качестве индивидуальных узлов учета у частных лиц применяются счетчики газа различных типов. Наибольший опыт эксплуатации у диафрагменных счетчиков газа, которые отличаются точностью измерения объема газа, энергонезависимостью, надежностью работы и простотой обслуживания. С учетом того, что счетчики газа могут быть установлены на улице или в неотапливаемом помещении, рекомендуется применять диафрагменные счетчики газа с механической или электронной температурной коррекцией. При учете газа на подомовых и кустовых узлах учета, у коммунальных потребителей, а также при расходе газа более 10 м3/ч у частных лиц необходимо применять измерительные комплексы с коррекцией по температуре.

Рис. 1. Третий уровень системы газоснабжения и учета газа

В данных комплексах, состоящих из счетчика газа и температурного корректора, для вычисления стандартного объема газа используется измеренная температура газа и подстановочные значения давления и коэффициента сжимаемости газа

Наиболее часто применяются измерительные комплексы СГ-ТК, модификация СГ-ТК-Д на базе диафрагменного счетчика газа ВК с температурным корректором ТС220 (ранее ТС210 и ТС215). Также раньше иногда использовались отдельные диафрагменные счетчики газа с другими типами корректоров и вычислителей.

Согласно Федеральному закону РФ №102-ФЗ «Об обеспечении единства измерений», ст. 9, «измерения должны осуществляться в соответствии с аттестованными в установленном порядке методиками. Порядок разработки и аттестации методик выполнения измерений определяется Госстандартом России». В связи с этим была разработана, утверждена и применялась методика измерений для комплексов СГ-ТК с температурными корректорами ТС210 и ТС215. Для узлов учета с другими типами счетчиков газа и температурными корректорами необходимо было аттестовывать отдельные методики измерений.

Введение в действие в 2013 году нового документа – ГОСТ Р 8.741–2011 «Объем природного газа. Общие требования к методикам измерений» – внесло некоторые изменения в существующую практику.

Требования ГОСТ Р 8.741–2011 распространяются как на вновь создаваемые, так и на реконструированные узлы учета газа. То есть узлы учета газа с установленными ранее измерительными комплексами при истечении срока поверки любого средства измерения, входящего в состав узла учета газа, должны пройти процедуру подтверждения соответствия требованиям данного стандарта. Все утвержденные и вновь разрабатываемые методики измерения должны соответствовать требованиям данного стандарта, включая и погрешность узла учета газа, в зависимости от их производительности. Пункт 7.1 данного стандарта регламентирует измерение объема природного газа, приведенного к стандартным условиям, с погрешностью не выше 3% при расходе до 1 тыс. м3/ч.

Все диафрагменные счетчики газа, выпускаемые в нашей стране и ввозимые из-за рубежа, были сертифицированы в соответствии с действующим стандартом ГОСТ Р 50818, который устанавливает для диафрагменных счетчиков газа следующие пределы допускаемой относительной погрешности измерения рабочего объема газа при нормальных условиях при выпуске из производства:

δ ≤ 3,0% – в поддиапазоне расхода от Qmin до 0,1Qnom;
δ ≤ 1,5% – в поддиапазоне расхода от 0,1Qnom до Qmax.

При проведении пересчета рабочего объема газа, измеренного таким счетчиком, к стандартному объему газа с учетом измеренного значения температуры газа и измеренного/подстановочного значения давления газа мы получаем погрешность измерения объема газа в стандартных условиях в нижнем поддиапазоне более 3%.

Фактически оказалось, что все узлы учета на базе диафрагменных счетчиков газа не соответствуют требованиям п. 7.1 нового ГОСТ Р 8.741–2011, что привело к необходимости их модернизации или замены.

На момент выхода данного стандарта комплексы СГ-ТК, модификация СГ-ТК-Д на базе диафрагменного счетчика газа ВК, имели пределы допускаемой относительной погрешности 3,2 и 1,7% – в зависимости от поддиапазона расхода.

Читайте так же:
261 закон менять счетчики

Для разрешения возникшего противоречия были проведены дополнительные испытания, а также выполнен детальный анализ протоколов поверки диафрагменных счетчиков газа ВК, применяемых в составе комплексов СГ-ТК-Д. Данный анализ показал, что реальные характеристики счетчиков газа ВК существенно лучше и погрешность счетчиков газа ВК меньше заявленных в описании типа значений погрешности 3,0 и 1,5% в зависимости от поддиапазона. При отсутствии более жестких требований счетчики газа ВК были сертифицированы в соответствии с требованиями к точности, приведенными в ГОСТ Р 50818. За 20 лет, прошедшие с момента первой сертификации и выпуска первых модификаций данных счетчиков, были улучшены характеристики точности и надежности за счет применения новых материалов и оптимизации конструкции. Технология производства также была модернизирована. В настоящий момент более 95% счетчиков газа ВК при выпуске из производства имеют погрешность, не превышающую 2,0% в нижнем поддиапазоне расхода.

Теперь, после появления ГОСТ Р 8.741–2011 с новыми требованиями к пределу погрешности, действительные точностные характеристики счетчиков газа ВК будут браться в расчет.

С учетом проведенных работ и по результатам испытаний была осуществлена новая сертификация комплексов СГ-ТК (Свидетельство об утверждении типа средств измерений RU.C.29.151.A №52834). Для комплексов СГ-ТК на базе диафрагменных счетчиков газа ВК был разработан новый документ «Методика измерений комплексами для измерения количества газа СГ-ТК модификации СГ-ТК-Д» (Свидетельство об аттестации методики измерений №181-560-01.00270-2013).

В соответствии с описанием типа комплекса СГ-ТК и данной методикой для изготовления измерительных комплексов СГ-ТК-Д отбираются диафрагменные счетчики газа ВК, предел допускаемой относительной погрешности которых по протоколу поверки не превышает 2,1% в нижнем поддиапазоне расхода и 1,5% в верхнем поддиапазоне расхода. Погрешность изготовленных на базе данных счетчиков измерительных комплексов СГ-ТК-Д равна:

δ ≤ 2,2% – от Qmin до 0,1Qnom;
δ ≤ 1,6% – от 0,1Qnom до Qmax.

В соответствии с методикой измерений комплексами СГ-ТК модификации СГ-ТК-Д расширенная неопределенность составляет:

U′ ≤ 3,0% – от Qmin до 0,1Qnom;
U′ ≤ 2,6% – от 0,1Qnom до Qmax.

В процессе эксплуатации измерительных комплексов СГ-ТК-Д в соответствии с методикой измерений могут возникнуть вопросы, связанные с установкой подстановочного значения давления в корректоре ТС220. Так, п. 10.5 данной методики требует, чтобы подстановочное значение абсолютного давления в температурном корректоре корректировалось, если отклонение абсолютного давления газа от текущего подстановочного значения выходит за пределы ±2,5%.

При этом решающими являются три фактора:

  • чем измеряется давление;
  • как измеряется давление;
  • способ изменения подстановочного значения давления в корректоре ТС220.

Рассмотрим эти факторы подробнее.

Чем измеряется давление

Датчик давления может измерять избыточное или абсолютное давление газа.

В случае использования в качестве средства измерения датчика абсолютного давления вопросов по определению абсолютного давления не возникает.

В случае использования датчика избыточного давления фактическое – абсолютное давление газа в трубопроводе рассчитывается по показаниям датчика избыточного давления с учетом атмосферного давления. Атмосферное давление должно измеряться барометром, установленным в месте измерения избыточного давления.

Обычно вместо измеренного атмосферного давления к измеренному избыточному дав­лению прибавляют принятое как условно постоянное значение атмосферного давления.

Необходимо учитывать, что при малых значениях избыточного давления возрастает вклад неопределенности измерения атмосферного давления в суммарную стандартную неопределенность определения абсолютного давления, что приводит к необходимости частой корректировки принятого условно постоянного значения атмосферного давления.

Применять СИ абсолютного или определять абсолютное давление по результатам измерений избыточного и атмосферного давления рекомендуется в случае нарушения следующего условия:

(Раmaх – Pamin)/Pmin ≤ U′p ,

где Раmaх и Раmin – наибольшее и наименьшее атмосферное давление в условиях эксплуатации узла учета газа;

Pmin – минимальное абсолютное давление газа в условиях эксплуатации узла учета газа;

U′p – относительная расширенная неопределенность измерения абсолютного давления (согласно ГОСТ Р 8.740–2011, таблица 7, не более 1,8%).

Оценка правильности принятия решения об использовании того или иного типа датчика давления производится на стадии проведения метрологической экспертизы проекта узла учета газа и на стадии его оценки на соответствие действующей методике измерений.

Читайте так же:
Чтобы счетчики отображались рядом

Измеренное/рассчитанное значение абсолютного давления сравнивается с установленным в корректоре ТС220. Подстановочное значение давления в корректоре ТС220 нужно изменять только при условии, если текущее значение подстановочного значения давления отклоняется от измеренного значения давления более чем на ±2,5%.

Как измеряется давление

Датчик по давлению устанавливается в соответствии с п. 5.2.7 Методики измерений на расстоянии от 1 до 3Ду после счетчика газа. Расстояние от точки отбора давления до ближайшего местного сопротивления должно быть не менее 1,5Ду.

Способ изменения подстановочного значения давления в корректоре газа

Вопрос изменения подстановочного значения давления можно решить несколькими способами:

Способ 1: Ручная установка значения давления.

При неисполнении п. 10.5 Методики измерений в присутствии заинтересованных сторон производится перепрограммирование корректора с установкой фактического значения абсолютного давления.

Способ 2: Интерактивная установка значения давления, измеренного датчиком на трубопроводе.

Рис. 2. Схема подключения для интерактивной установки значения давления в корректор ТС220

При установке на трубопроводе вблизи счетчика газа дополнительного датчика абсолютного давления (рис. 2) выходной сигнал датчика передается на дополнительный вход модифицированного коммуникационного модуля БПЭК. Микроконтроллер коммуникационного модуля периодически или по команде из диспетчерского центра опрашивает датчик давления и передает данные в диспетчерский центр в програм­мный комплекс «СОДЭК Газсеть». Программный комплекс «СОДЭК Газсеть» сравнивает полученное измеренное значение давления с текущим значением подстановочного давления, установленного в ТС220. Оператор видит сравнение измеренного и текущего подстановочного значений давления и может дать команду установить измеренное значение давления в корректор ТС220 как новое подстановочное значение давления. Датчик давления в данной системе является самостоятельным измерительным прибором и проходит поверку независимо от измерительного комплекса учета газа. При этом требования п. 10.2 Методики измерений выполняются.

Рис. 3. Схема подключения для автоматизированной установки значения давления в корректор ТС220

В качестве автоматизации предыдущего способа возможно автономное решение, когда выходной сигнал датчика абсолютного давления передается на дополнительный вход модифицированного коммуникационного модуля БПЭК (рис. 3), и измеренное значение давления автоматически устанавливается в корректор ТС220 как подстановочное значение и используется для вычисления коэффициента коррекции. Каждое изменение подстановочного давления в корректоре добавляет в архив две записи: значение до замены и значение после замены. Возможна реализация режима работы, когда подстановочное значение давления в корректоре ТС220 изменяется только при условии, что текущее значение подстановочного значения давления отклоняется от измеренного значения давления более чем на ±2,5%. При этом требования п. 10.2 Методики измерений выполняются.

Таким образом, в отношении соответствия требованиям узлов учета газа на базе диафрагменных счетчиков газа, применяемых на третьем уровне в качестве подомовых, кустовых узлов учета, узлов учета у коммунальных потребителей или у индивидуальных потребителей при расходах более 10 м3/ч, можно сказать следующее:

Методика поверки счетчиков воды

Важно отметить, что МИ 1592-2015 «Рекомендация. ГСИ. Счетчики воды. Методика поверки» представляет собой полный свод правил и четкий алгоритм действий, которые нужно соблюдать при проведении поверок любых видов и типов счетчиков воды: для горячей и холодной воды, универсальных, крыльчатых, электромагнитных, вихревых, ультразвуковых, турбинных и других, с DN от 10 до 250 мм. В этом документе разработана методика как для проведения первичной поверки счетчиков, так и для периодической процедуры, проводимой во время эксплуатации прибора. В том случае, если поверка производится на заводе-изготовителе (первичная) или со снятием прибора, то следует использовать методику «St», но при выполнении работ непосредственно на объекте, без снятия счетчика, то нужно придерживаться протокола «Pr». При этом сроки поверок приборов определяются исключительно в соответствии с данными, указанными в свидетельстве к счетчику, за исключением случаев, когда по объективным причинам, например, при механическом повреждении устройства и т.д., возникает необходимость в проведении внеочередных испытаний.

Расходомеры постоянного перепада давлений

Расход жидкости или газа можно измерять и при постоянном перепаде давлений. Для сохранения постоянного перепада давлений при изменении расхода через сужающее устройство необходимо автоматически изменять площадь его проходного сечения. Наиболее простой способ — автоматическое изменение площади проходного сечения в ротаметре.

Читайте так же:
Нормы при подключении счетчика

Ротаметр представляет собой вертикальную конусную трубку, в которой находится поплавок. Измеряемый поток Q проходя через ротаметр снизу вверх, создает перепад давлений до и после поплавка. Этот перепад давлений, в свою очередь создает подъемную силу, которая уравновешивает вес поплавка.

Если расход через ротаметр изменится, то изменится и перепад давлений. Это приведет к изменению подъемной силы и, следовательно, к нарушению равновесия поплавка. Поплавок начнет перемешаться. А так как трубка ротаметра конусная, то при этом будет изменяться площадь проходного сечения в зазоре между поплавком и трубкой, в результате произойдет изменение перепада давлений, а следовательно, и подъемной силы. Когда перепад давлений и подъемная сила снова вернутся к прежним значениям, поплавок уравновесится и остановится.

Таким образом, каждому значению расхода через ротаметр Q соответствует определенное положение поплавка. Так как для конусной трубки площадь кольцевого зазора между ней и поплавком пропорциональна высоте его подъема, то шкала ротаметра получается равномерной.

Промышленность выпускает ротаметры со стеклянными и металлическими трубками. У ротаметров со стеклянной трубкой шкала нанесена прямо на поверхности трубки. Для дистанционного измерения положения поплавка в металлической трубке используют промежуточные преобразователи линейного перемещения в унифицированный электрический или пневматический сигнал.

В ротаметрах с электрическим выходным сигналом вместе с поплавком перемещается плунжер дифференциально-трансформаторного преобразователя. В ротаметрах с пневматическим выходным сигналом для передачи положения поплавка преобразователю используется магнитная муфта. Она состоит из двух постоянных магнитов. Один — сдвоенный — перемещается вместе с поплавком, другой, укрепленный на рычаге преобразователя перемещения в давление сжатого воздуха, двигается вместе с рычагом вслед за первым магнитом.

Выпускаются также ротаметры для измерения расхода сильноагрессивных сред. Ротаметры снабжены рубашкой для парового обогрева. Они предназначены для измерения расхода кристаллизующихся сред.

Например, для измерения расхода нефтепродуктов может быть использован ультразвуковой расходомер Dynasonics TFXL (Рисунок 3а). Погрешность в 1% позволяет производить высокоточные измерения, учитывая, что измеряемый продукт является дорогим, это важная особенность. Прибор работает со средой, температура которой может находится в диапазоне от −40°С до +176°С. Расходомер использует бесконтактны принцип измерения и позволяет производить монтаж снаружи трубопровода. Высокие эксплуатационные характеристики (температура окружающей среды от −40°С до +85°С) и специальные исполнения для опасных зон позволяют использовать прибор в неблагоприятных условиях.

Рисунок 3а. Расходомер Dynasonics TFXL

Рисунок 3б. Принцип измерения

Принцип работы данного прибора основан на перемещении акустических колебаний в среде. Используются 2 преобразователя, которые одновременно являются и передатчиками, и приемниками. Сигнал попеременно передается от преобразователя к преобразователю, сначала по потоку, затем против потока. По разности скоростей прохождения двух сигналов прибор определяет направление потока и его скорость, которая пропорциональна расходу. Прибор может выдать результат измерений по месту на ЖК-дисплее электронного блока, а также передать по стандартному аналоговому выходу 4-20 мA.

По теме: методические разработки, презентации и конспекты

Статья предназначена для педагогов, которые выбирают тактику преподавания учебных дисциплин (предметов) с точки зрения современных требований к занятию (уроку). Применение активных методов обучения сп.

Применение современных педагогических технологий в комплексе.

Определение расчетных расходов воды.

Активное обучение предполагает использование такой системы методов, которая направлена главным образом не на изложение преподавателем готовых знаний, их запоминание и воспроизведение студентом, а на с.

Лекция с использованием информационных технологий. Учет прочих доходов и расходов.

Выполнение студентами 3 курса практического занятия на тему «Определение расходов воды при производстве строительных работ», МДК 01.02 «Проект производства работ&quot.

Производственная практика от 28.05.2020.Повторить материал. Выполнить практическое задание.Срок выполнения до 01.06.2020.

Определение плотности газа по результатам измерения давления и температуры датчиками Arduino

Введение

Задача измерения параметров газовой смеси широко распространена в промышленности и торговле. Проблема получения достоверной информации при измерении параметров состояния газовой среды и её характеристик с помощью технических средств разрешается принятыми в стандартах методиками выполнения измерений (МВИ), например, при измерении расхода и количества газов с помощью стандартных сужающих устройств [1], или с помощью турбинных, ротационных и вихревых расходомеров и счётчиков [2].

Читайте так же:
Программа для счетчиков iphone

Периодический газовый анализ позволяет установить соответствие между реальной анализируемой смесью и её моделью, по которой в МВИ учитываются физико-химические параметры газа: состав газовой смеси и плотность газа при стандартных условиях.
Также в МВИ учитываются теплофизические характеристики газа: плотность при рабочих условиях (давление и температура газа, при которых выполняют измерение его расхода или объёма), вязкость, фактор и коэффициент сжимаемости.

К измеряемым в реальном режиме времени параметрам состояния газа относятся: давление (перепад давлений), температура, плотность. Для измерения этих параметров применяются соответственно средства измерительной техники: манометры (дифманометры), термометры, плотномеры. Измерение плотности газовой среды допускается измерять прямым или косвенным методами измерения. Результаты как прямых, так и косвенных методов измерения зависят от погрешности средств измерения и методической погрешности. В рабочих условиях, сигналы измерительной информации могут быть подвержены влиянию значительного шума, среднее квадратичное отклонение которого может превышать инструментальную погрешность. В этом случае, актуальной задачей является эффективная фильтрация сигналов измерительной информации.

В данной статье рассматривается методика косвенного измерения плотности газа при рабочих и стандартных условиях c применением фильтра Калмана.

Математическая модель определения плотности газа

Обратимся к классике и вспомним уравнение состояния идеального газа [3]. Имеем:

1. Уравнение Менделеева-Клапейрона:

(1),

— давление газа;

— молярный объём;

R — универсальная газовая постоянная,

;

T — абсолютная температура, T=273.16 К.

2. Два измеряемых параметра:

p – давление газа, Па
t – температура газа, °С.

Известно, что молярный объём зависит от объёма газа V и количества молей газа в этом объёме:

(2)

Также известно, что

(3),

где: m – масса газа, M – молярная масса газа.

Учитывая (2) и (3) перепишем (1) в виде:

(4).

Как известно, плотность вещества

равна:

(5).

Из (4) и (5) выведем уравнение для плотности газа

:

(6)

и введём обозначение параметра

, который зависит от молярной массы газовой смеси:

(7).

Если состав газовой смеси не меняется, то параметр k является константой.
Итак, для расчёта плотности газа необходимо рассчитать молярную массу газовой смеси.

Молярную массу смеси веществ определяем, как среднее арифметическое взвешенное молярной массы массовых долей, входящих в смесь индивидуальных веществ.

Примем известным состав веществ в газовой смеси – в воздухе, который состоит из:

  • 23 % по весу из молекул кислорода
  • 76 % по весу из молекул азота
  • 1 % по весу из атомов аргона

Молярные массы этих веществ воздуха будут соответственно равны:

, г/моль.

Вычисляем молярную массу воздуха, как среднее арифметическое взвешенное:

Теперь, зная значение константы

, мы можем вычислить плотность воздуха по формуле (7) с учетом измеряемых значений

и t:

Приведение плотности газа к нормальным, стандартным условиям

Практически, измерения свойств газов проводят в различных физических условиях, и для обеспечения сопоставления между различными наборами данных должны быть установлены стандартные наборы условий [4].

Стандартные условия для температуры и давления – это установленные стандартом физические условия, с которыми соотносят свойства веществ, зависящие от этих условий.

Различные организации устанавливают свои стандартные условия, например: Международный союз чистой и прикладной химии (IUPAC), установил в области химии определение стандартной температуры и давления (STP): температура 0 °C (273.15 K), абсолютное давление 1 бар ( Па); Национальный институт стандартов и технологий (NIST) устанавливает температуру 20 °C (293,15 K) и абсолютное давление 1 атм (101.325 кПа), и этот стандарт называют нормальной температурой и давлением (NTP); Международная организация по стандартизации (ISO) устанавливает стандартные условия для природного газа (ISO 13443: 1996, подтверждённый в 2013 году): температура 15.00 °С и абсолютное давление 101.325 кПа.

Поэтому, в промышленности и торговле необходимо указывать стандартные условия для температуры и давления, относительно которых и проводить необходимые расчёты.

Плотность воздуха мы рассчитываем по уравнению (8) в рабочих условиях температуры и давления. В соответствии с (6) запишем уравнение для плотности воздуха в стандартных условиях: температура и абсолютное давление :

(9).

Делаем расчёт плотности воздуха, приведенной к стандартным условиям. Разделим уравнение (9) на уравнение (6) и запишем это отношение для :

(10).

Подобным образом, получим уравнение для расчёта плотности воздуха, приведенной к нормальным условиям: температура и абсолютное давление

Читайте так же:
Аналог счетчику са4у и672м

:

(11).

В уравнениях (10) и (11) используем значения параметров воздуха , T и P из уравнения (8), полученные в рабочих условиях.

Реализация измерительного канала давления и температуры

Для решения многих задач получения информации, в зависимости от их сложности, удобно создавать прототип будущей системы на базе одной из микроконтроллерных платформ типа Arduino, Nucleo, Teensy, и др.

Что может быть проще? Давайте сделаем микроконтроллерную платформу для решения конкретной задачи – создание системы измерения давления и температуры, затрачивая меньше, возможно, средств, и используя все преимущества разработки программного обеспечения в среде Arduino Software (IDE).

Для этого, на аппаратном уровне, нам понадобятся компоненты:

  1. Arduino (Uno, …) – используем как программатор;
  2. микроконтроллер ATmega328P-PU – микроконтроллер будущей платформы;
  3. кварцевый резонатор на 16 МГц и пара керамических конденсаторов на 12-22 пФ каждый (по рекомендациям фирмы-изготовителя);
  4. тактовая кнопка на перезагрузку микроконтроллера и подтягивающий плюс питания к выводу RESET микроконтроллера резистор на 1 кОм;
  5. BMP180 — измерительный преобразователь температуры и давления с интерфейсом I2C;
  6. преобразователь интерфейсов TTL/USB;
  7. расходные материалы – провода, припой, монтажная плата, и др.

Принципиальная схема платформы, с учетом необходимых интерфейсов: стандартного последовательного интерфейса, I2C, и ничего более, представлена на рис. 1.


Рис. 1 — Принципиальная схема микроконтроллерной платформы для реализации системы измерения давления и температуры

Теперь рассмотрим этапы осуществления нашей задачи.

1. Прежде, нам нужен программатор. Подключаем Arduino (Uno, …) к компьютеру. В среде Arduno Software из меню по пути Файл->Примеры->11. ArdunoISP добираемся до программы программатора ArduinoISP, которую зашиваем в Arduino. Предварительно из меню Инструменты выбираем соответственно Плату, Процессор, Загрузчик, Порт. После Загрузки программы ArduinoISP в плату, наша Arduino превращается в программатор и готова к использованию по назначению. Для этого в среде Arduno Software в меню Инструменты выбираем пункт Программатор: “Arduino as ISP”.

2. Подключаем по интерфейсу SPI ведомый микроконтроллер ATmega328P к ведущему программатору Arduino (Uno, …), рис. 2. Следует заметить, что предварительно биты регистра Low Fuse Byte микроконтроллера ATmega328P были установлены в незапрограммированное состояние. Переходим в среду Arduno Software и из меню Инструменты выбираем пункт Записать Загрузчик. Прошиваем микроконтроллер ATmega328P.


Рис. 2 – Схема подключения микроконтроллера к программатору

3. После успешной прошивки, микроконтроллер ATmega328P готов к установке на разработанную микроконтроллерную платформу (рис. 3), которую программируем также, как и полноценную Arduino (Uno, …). Программа опроса измерительного преобразователя давления и температуры представлена на листинге 1.


Рис. 3 Система измерения давления и температуры

Программа Python для фильтрации по каналам температуры и давления, и получение результатов

Программа Python методики определения плотности газа по результатам измерений давления и температуры представлена на листинге 2. Информация из измерительной системы выводится в реальном режиме времени.

Результаты расчёта представлены листингом и рис. 4, 5, 6.


Рис. 4 – результаты измерения (красный) и фильтрации (синий) давления


Рис. 5 – результаты измерения (красный) и фильтрации (синий) температуры


Рис. 6 – результаты расчёта плотности воздуха, приведенной к стандартным условиям (температура 273.15 К; абсолютное давление 101.325 кПа)

Выводы

Разработана методика определения плотности газа по результатам измерения давления и температуры с применением датчиков Arduino и программных средств Python.

Проверка и настройка приборов

Для того, чтобы прибор показывал стабильно точные результаты измерений, его необходимо проверять не реже 1 раза каждые 4 года. Процедура проверки включает:

  • проверку работоспособности устройства;
  • стендовую проверку на соответствие стандартам метрологии;
  • изменение настроек в соответствии с актуальными требованиями и внесение их в память расходомера;
  • запись данных о проверке в паспорт или оформление нового паспорта.

Для того, чтобы на контрольно-измерительное устройство не подвергалось воздействию помех, используются цифровые протоколы. Они снижают влияние фона и электромагнитных шумов на тракты, передающие сигнал от датчиков к процессору. Настройка фильтров, помогающих обработать сигнал, осуществляется с помощью специального программного обеспечения.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector