Ноль проходит мимо счетчика
Выбивает автомат в щитке — как определить, где происходит замыкание
Отправим материал на почту
- Причины срабатывания автоматического выключателя
- Причина №1 — перегрузка в домашней сети
- Причина №2 – неисправность бытовых приборов
- Причина №3 – неисправность AB
- Причина №4 – замыкание проводки
- Другие причины
- Заключение
Если выбило автомат в щитке, то этому можно дать только два разумных объяснения: где-то происходит короткое замыкание или возникает перегрузка в домашней сети. Конечно, устранение такой неполадки не терпит отлагательств, ведь жизнь современного homo sapiens неразрывно связана с электроэнергией на всех уровнях его деятельности (или бездеятельности). Чтобы определить место неисправности (причину аварии) нужно обладать пониманием ситуации – ясно представлять себе те участки, где это могло произойти.
Как остановить счетчик электроэнергии
То получается что в случае образования разбаланса ( различие входного счетчика и проданой энергии минус потери на сети) можно спокойно дать сигнал на эти самые счетчики считать не с коэффициентом 1, а например 1,1 ну или 1,25.Проверить факт такого вмешательства можно только одним способом. Под покровом ночи вырезать счетчик, поместить его в клетку фарадея , что бы не проходил внешний сигнал и везти его на внеочередную поверку , ну а потом добиваться от завода заключения о вмешательстве в алгоритм работы прибора.Калямба Slavik85G Участник Сообщений: 19 Зарегистрирован: 27 ноя 2017, 01:03 Возраст: 37 Репутация: 0 Имя: Вячеслав Пол: Мужской Откуда: Брянск Забанен: Бессрочно Re: Как обойти электросчётчик на столбе?
- Цитата
- Цитата
Обойти легко, но видно будет сразу, да и издалека.
Немного теории
Не вдаваясь в технические подробности можно сказать так, что однофазная электрическая сеть это такой способ передачи электрического тока, когда к потребителю (нагрузке) переменный ток течет по одному проводу, а от потребителя возвращается по другому проводу.
Возьмем, к примеру, замкнутую электрическую цепь, состоящую из источника переменного напряжения, двух проводов и лампы накаливания. От источника напряжения к лампе ток течет по одному проводу и, пройдя через нить накала лампы, раскалив ее, ток возвращается к источнику напряжения по другому проводу. Так вот, провод, по которому ток течет к лампе, называют фазным или просто фазой (L), а провод, по которому ток возвращается от лампы, называют нулевым или просто нулем (N).
При разрыве, например, фазного провода, цепь размыкается, движение тока прекращается и лампа гаснет. При этом участок фазного провода от источника напряжения и до места разрыва будет находиться под током или фазным напряжением (фазой). Остальная же часть фазного и нулевого проводов будут обесточены.
При разрыве нулевого провода движение тока также прекратится, но теперь под фазным напряжением окажутся фазный провод, оба вывода лампы и часть нулевого провода, отходящего от цоколя лампы к месту разрыва.
Убедиться в наличии фазы на обоих выводах лампы и на нулевом проводе, отходящем от лампы, можно индикаторной отверткой. Но если на этих же выводах и проводе измерить напряжение вольтметром, то он ничего не покажет, так как в этой части цепи присутствует одна и та же фаза, которую относительно себя измерить нельзя.
Вывод: между одной и той же фазой никакого напряжения нет. Напряжение есть только между нулевым и фазным проводом.
Совет. Для определения наличия фазы и напряжения в электрической сети необходимо совместное использование индикаторной отвертки и вольтметра. В качестве вольтметра можно использовать мультиметр.
А теперь перейдем к практике и рассмотрим некоторые ситуации с нулем, которые можно самостоятельно определить и по возможности устранить без привлечения службы коммунэнерго:
1. Обрыв нуля во входном щитке дома или квартиры;
2. Обрыв нуля на входе или внутри распределительной коробки;
3. Замыкание нулевой жилы на фазную при механическом повреждении изоляции.
Как найти фазу и ноль с помощью контрольки электрика
Контролька электрика на лампочке накаливания
Для проверки наличия питающего напряжения в электрической сети ранее электрики использовали самодельную контрольку, представляющую собой маломощную лампочку накаливания, вкрученную в электрический патрон. К патрону подсоединены два проводника из многожильного провода длиной около 50 см.
Для того, чтобы проверить наличие напряжения, нужно проводниками контрольки прикоснуться к проводам электропроводки. Если лампочка засветилась, напряжение есть.
Контролька электрика на светодиоде
Контролька электрика на лампочке требует бережного отношения и занимает много места. Гораздо удобнее сделать контрольку электрика на светодиоде по нижеприведенной схеме.
Схема простая, последовательно с любым светодиодом включается токоограничивающее сопротивление. Светодиод любого типа и цвета свечения. Пользоваться ней так же, как и контролькой электрика на лампочке.
Светодиод и резистор можно разместить в корпусе от шариковой ручки подходящего размера. На фото контролька для автомобилиста. Схема такой контрольки такая же. Только в зависимости от типа используемого светодиода, резистор R1 ставится номиналом около 1 кОм.
Проверить наличие напряжения на проводах в бортовой сети автомобиля такой контролькой просто, правый конец по схеме соединяется с массой, а левым касаетесь любого контакта. Если напряжение на контакте есть, светодиод засветится. Если к положительной клемме аккумулятора прикоснуться одним концом предохранителя, а ко второму прикоснуться контролькой, то если светодиод не будет светить, значит, предохранитель в обрыве. Так можно проверять и лампочки накаливания, и наличие контакта в переключателях.
Поиск фазы при наличии нулевого и заземляющего проводников
Если требуется найти фазу в электропроводке, которая имеет фазный, нулевой и заземляющий провода, то с помощью контрольки это легко сделать. Достаточно выполнить три касания проводами контрольки. Нужно присвоить каждому проводу условный номер, например 1, 2 и 3 и по очереди прикасаться к парам проводов 1 – 2, 2 – 3, 3 – 1.
Возможно следующее поведение лампочки. Если при прикосновении к 1 – 2 лампочка не засветилась, значит, провод 3 фазный. Если светит при прикосновении к 2 – 3 и 3 – 1, значит 3 фазный. Смысл простой, при прикосновении к нулевому и заземляющему проводнику лампочка светить не будет, так как практически это проводники, на щитке соединенные вместе.
Вместо контрольки можно включить любой вольтметр переменного тока, рассчитанный на измерение напряжения не менее 300 В. Если одним щупом вольтметра прикоснуться к фазному проводу, а другим к нулевому или заземляющему, то вольтметр покажет напряжение питающей сети.
Поиск фазы и нуля контролькой
Внимание, прикосновение к любым оголенным проводникам при поиске фазы контролькой может привести к поражению электрическим током.
Делается все очень просто, один конец провода контрольки подсоединяется к зачищенной до металла трубе центрального отопления или водопровода, а другим по очереди касаетесь проводам или контактам электропроводки. При прикосновении к фазному проводу лампочка засветит.
Если до металла трубы не добраться, то можно воспользоваться водой, текущей из смесителя. Для этого включаете воду и один провод контрольки помещаете под струю воды как можно ближе к смесителю. Вторым концом провода касаетесь проводов электропроводки. Слабый свет лампочки подскажет Вам, где фаза.
В контрольку лучше всего вкрутить самую маломощную лампочку, я использовал лампочку от подсветки холодильников мощностью 7,5 Вт. Для того, чтобы дотянуться до воды, можно использовать кусок любого провода или стандартный удлинитель.
Почему происходит отгорание нуля?
Сегодня мы регулярно пользуемся большим количеством электрических приборов, большинство из них это импульсные источники питания. Это телевизоры, радиоприемники, компьютеры итд. Характер потребления тока этими приборами сильно отличается от прежних.
В цепи, возникают дополнительные импульсные токи, которые не компенсируются в средней точке. Прибавляем к ним некомпенсированные, вызванные разностью однофазных нагрузок и получаем ток, близкий к самому большому току одной из фаз, или даже превышающий его.
Вот мы и пришли к благоприятным условиям для отгорания нуля. Чаще всего отгорание происходит в слабых местах, где: поврежден провод, занижено сечение кабеля, плохой контакт.
С каждым днем в обиходе появляется все больше электроприборов, соответственно ситуация ухудшается. Поэтому при монтаже электропроводки, необходимо учитывать высокую вероятность отгорания нулевого проводника. Пренебрегать этим не стоит .
Обрыв нуля в трехфазной сети — причины и последствия
1. Введение
Обрыв нуля — это аварийный режим работы трехфазной электросети при котором, в результате обрыва (отгорания) нулевого рабочего провода, в случае несимметричной нагрузки, на подключенных к данной сети однофазных электроприемниках возникает напряжение значительно ниже либо наоборот значительно превышающее номинальное напряжение однофазной сети.
Последствия обрыва нуля — это вышедшее из строя электрооборудование и в первую очередь это дорогостоящие электронные приборы, такие как компьютеры, телевизоры, современные стиральные машины и т.д., которые являются наиболее чувствительными к перепадам напряжения сети, и в особенности к его повышению.
Совершенно не важно проживаете вы в частном доме или в квартире, трехфазная у вас сеть или однофазная при обрыве нуля питающей сети и при отсутствии должной защиты вы рискуете стать жертвой подобной аварии.
В данной статье мы разберемся с тем, что происходит при обрыве нуля, откуда в однофазной розетке может появиться 380 Вольт, а так же по каким причинам может произойти обрыв нуля и как от этого защититься.
2. Почему при обрыве нуля повышается напряжение?
Что бы ответить на этот вопрос разберемся с тем как устроена наша электросеть и как в нее подключаются электроприборы.
Есть два основных способа подключения электроприемников — параллельный и последовательный:
На картинке выше представлено параллельное подключение двух лампочек, при таком подключении напряжение на обоих лампочках будет одинаково и равно напряжению сети, вне зависимости от количества лампочек и их мощности, в то время как ток сети (I1) будет равен сумме токов I2 — который проходит через первую лампочку и I3 который проходит через вторую лампочку.
Именно по такой схеме подключается все электрооборудование в квартирах и частных домах.
Рассчитать общий ток при параллельном подключении можно по формуле:
I=U/R
где: U — напряжение сети, Вольт; R — сопротивление сети, Ом.
Из этой формулы видно, что ток в сети обратно пропорционален сопротивлению, т.е. чем выше сопротивление тем ниже ток и наоборот.
Каждый электрический прибор будь то простая лампочка или микроволновая печь имеет свое электрическое сопротивление, причем чем мощнее прибор тем меньше его сопротивление.
Общее сопротивление сети при параллельном подключении определяется по формуле:
- При подключении двух резисторов:
- При подключении трех и более резисторов:
где: R1,R2,Rn — сопротивления отдельно взятых электрических приборов включенных в сеть.
Представим, что мы параллельно включили в сеть 2 лампочки: одна лампочка мощностью 75 Ватт сопротивление которой R1= 600 Ом, а вторая — 150 Ватт с сопротивлением R2= 300 Ом, тогда общее сопротивление сети будет равно:
Rсети=(600*300)/(600+300)=200 Ом
А теперь добавим в нашу сеть третью лампочку мощностью 75 Ватт с сопротивлением R3= 600 Ом, тогда:
1/Rсети=1/600+1/300+1/600 ➜ 1/Rсети=0,0017+0,0033+0,0017,
отсюда находим общее сопротивление сети:
Rсети=1/(0,0017+0,0033+0,0017)=149 Ом
Как видно из данного расчета при подключении третьей лампочки общее сопротивление сети уменьшилось.
ВЫВОД №1: Чем больше в сеть параллельно подключено электроприемников тем ниже будет ее общее сопротивление.
При последовательном подключении ток протекающий в цепи имеет одинаковую величину на всем ее протяжении (т.е. через обе лампочки протекает одинаковый ток вне зависимости от их мощности)который рассчитывается по той же формуле, что и при параллельном подключении:
Однако общее сопротивление сети при последовательном подключении определяется как сумма сопротивлений всех подключенных электроприемников:
где: R1*R2*Rn — сопротивления отдельно взятых электрических приборов включенных в сеть.
Напряжение сети при последовательном подключении в нее электроприборов разделяется между этими электроприборами пропорционально их сопротивлению. Рассчитать напряжение на каждом приборе можно по следующей формуле:
Uэлектроприемника = Iсети*Rэлектроприемника
Как видно из этой формулы, напряжение на электроприемнике прямо пропорционально его сопротивлению.
Для наглядности произведем расчет напряжения на двух подключенных последовательно в сеть 220 Вольт лампочках мощностью 75 Ватт (сопротивление одной лампочки R=600 Ом) (рис. 1)
В этом случае общее сопротивление сети будет равно:
Rсети= Rлампочки №1 + Rлампочки №2=600+600=1200 Ом
Ток сети будет равен:
Тогда напряжение на лампочке будет равно:
Uлампочки = Iсети*Rлампочки=0,183*600=110 Вольт
Так как сопротивление (мощность) обоих лампочек одинаково напряжение сети разделится между ними поровну.
Таким образом выполняется подключение лампочек в гирляндах, например, если взять десятивольтовые лампочки одинаковой мощности то подключив 22 таких лампочки последовательно в сеть 220 Вольт на каждой лампочке будет как раз 10 Вольт (220Вольт/22лампочки=10Вольт на каждую лампочку), однако если перегорит одна лампочка цепь разорвется и вся гирлянда погаснет.
Теперь представим, что мы заменили одну из лампочек на лампочку мощностью 150 Ватт, сопротивление которой соответственно будет Rлампочки №2 =300 Ом (рис. 2)
Тогда общее сопротивление сети будет равно:
Rсети= Rлампочки №1 + Rлампочки №2=600+300=900 Ом
Ток сети будет равен:
Тогда напряжение на лампочке №1 (75 Ватт) будет равно:
Uлампочки №1 = Iсети*Rлампочки №1=0,2444*600=147 Вольт
А напряжение на лампочке №2 (150 Ватт) составит:
Uлампочки №2 = Iсети*Rлампочки №2=0,2444*300=73 Вольта
То есть менее мощная лампочка будет получать большее напряжение и соответственно ярче гореть.
ВЫВОД №2: При последовательном подключении в сеть электроприборов на менее мощные электроприборы «выделяется» большее напряжение чем на приборы большей мощности.
Ну и наконец разберемся почему при обрыве нуля в вашей розетке может появиться 380 Вольт, для этого представим обычную схему подключения квартир в многоквартирном жилом доме (аналогичным образом подключаются так же и частные жилые дома к линиям электропередач):
На схеме представлено подключение трех квартир, т.к. нагрузка по фазам должна разделяться равномерно все квартиры подключены на разные фазы, при этом во всех трех квартирах общий ноль.
В трехфазной сети напряжение между фазами составляет 380 Вольт, а напряжение между фазой и нулем — 220 Вольт, соответственно при данной схеме в каждой из квартир напряжение сети составляет 220 Вольт и в эту сеть параллельно подключаются электроприборы, ток при этом протекает от фазы к нулю.
Теперь посмотрим что происходит в электросети при обрыве нуля (для большей наглядности и упрощения расчетов представим, что жильцы квартиры №3 уехали в отпуск предусмотрительно отключив все электроприборы в квартире):
На приведенной выше схеме видно, что при обрыве нуля первая и вторая квартиры оказались подключены последовательно в сеть 380 Вольт, ток в этом случае протекает уже не от фазы к нулю, а от фазы к фазе.
Как уже было сказано выше, при последовательном подключении в сеть электроприборов, на менее мощные электроприборы выделяется большее напряжение (вывод №2). Если бы общая мощность включенных в сеть электроприборов в квартире №1 была равна мощности включенных в сеть приборов в квартире №2, то напряжение между квартирами поделилось бы поровну, т.е. по 190 Вольт на квартиру, однако на практике такого как правило не бывает.
В нашем случае у жильцов в квартире №1 в сеть включены только компьютер, телевизор и одна лампочка общей мощностью 475 Ватт в то время как в квартире №2 в сеть включены: стиральная машина, электропечь, и 2 лампочки общей мощностью 3950 Ватт следовательно, т.к. общая мощность квартиры №1 значительно ниже, напряжение в электросети квартиры №1 будет намного выше.
Произведя расчет можно определить, что напряжение в электросети квартиры №2 составит 40 Вольт, при таком напряжении электроприборы в квартире №2 перестанут работать, нити накала в лампочках будут едва раскалены, в то же время напряжение сети в квартире №1 составит 340 Вольт, при таком высоком напряжении электроприборы в квартире №1 начнут выходить из строя, в первую очередь выйдут из строя наиболее чувствительные к перепадам напряжения сети электронные приборы, т.е. телевизор и компьютер, причем после их поломки общая мощность квартиры №1 уменьшится, а напряжение сети при этом соответственно будет увеличиваться пока все включенное в сеть электрооборудование в квартире №1 не»сгорит»:
После выхода из строя последнего электроприбора в квартире №1 электрическая цепь будет разорвана (ток перестанет протекать), при этом напряжение в электросети квартиры №2 станет равным нулю, а замерив напряжение в розетке квартиры №1 мы увидим 380Вольт.
Причины обрыва нуля.
Можно выделить несколько причин обрыва нуля:
1) Некачественное и не своевременное техническое обслуживание электрощитков (либо его полное отсутствие). Данная проблема особенно остро стоит в многоквартирных жилых домах.
Периодическое техническое обслуживание — залог безаварийной работы электрооборудования. К сожалению эксплуатирующие организации (ЖКХ) зачастую пренебрегают этим важным принципом и их электрики заглядывают в этажные электрощитки только после того как случается очередная авария.
Пример отгорания нуля от нулевой шинки в результате плохо зажатого контактного соединения:
2) Несимметричное распределение нагрузки.
Как уже было написано выше, нагрузка по фазам должна распределяться как можно более равномерно (симметрично).
Как видно из приведенных выше схем, при симметричной нагрузке (когда подключенная мощность на всех трех фазах одинакова) токи взаимоуравновешиваются, в результате ток в нулевом проводе отсутствует, однако при несимметричной нагрузке на фазах в нулевом проводнике протекает так называемый ток уравнивания компенсирующий неравномерность нагрузки, причем чем выше данная несимметрия, тем больше величина тока уравнивания и следовательно выше риск отгорания нуля.
3) Старая электропроводка. Если вам не посчастливилось жить в новостройке, то вполне возможно, что ваш дом проектировался лет 30-40 назад, когда нагрузка среднестатистической квартиры представляла собой пару лампочек и одно радио, в наше время в каждой квартире есть множество энергоемкого оборудования такого как СВЧ печи, электрочайники, электрические печи и т.д., но на такие нагрузки старая электропроводка конечно же не рассчитывалась.
Защита от обрыва нуля
Есть два основных способа защиты от обрыва нуля: повторное заземление нулевого проводника и установка реле напряжения:
1) Повторное заземление нуля — такой способ защиты подходит для частных жилых домов заземление которых выполняется по системе TN-C-S, при этом во вводном электрощитке дома к нулевому проводнику подключается контур заземления:
Как видно на схеме, при обрыве (отгорании) нуля, ток уравнивания продолжает протекать к контуру заземления, благодаря чему фазное напряжение сохраняется на уровне 220 Вольт. Подробнее о том как выполнить повторное заземление читайте статью: Заземление в частном доме.
2) Установка реле напряжения — данный способ применяется для защиты от обрыва нуля электросети квартир в многоквартирных жилых домах, а так же для защиты электросети частных жилых домов с заземлением выполненным по системе TT, либо вовсе не имеющих контура заземления.
Реле напряжения — это прибор контролирующий уровень напряжения электросети, в случае повышения или снижения его до недопустимого уровня реле напряжения отключает электросеть до того момента, как напряжение сети не вернется в норму.
Подробнее читайте статью реле напряжения.
Была ли Вам полезна данная статья? Или может быть у Вас остались вопросы? Пишите в комментариях!
Не нашли на сайте статьи на интересующую Вас тему касающуюся электрики? Напишите нам здесь. Мы обязательно Вам ответим.
Как правильно соединить ноль с землей
Неправильное соединение нуля с землей может явиться причиной трагедии, вместо защиты. В общедомовом вводном устройстве (ВРУ) должно быть произведено разделение совмещенного нуля на рабочий и защитный проводники. Потом защитный ноль должен быть разведен к щитам на этажах, а затем в квартиры.
Получается пятипроводная сеть:
- 3 фазы;
- N;
- PE.
К третьему контакту розеток надо подключать PE. В старых домах встречается четырехпроводная сеть:
- 3 фазы;
- совмещенный ноль
Если проводник РЕ изготовлен в виде алюминиевой шины, то сечение ее должно быть не менее 16 мм ² , если медная шина (латунная) – не менее 10 мм 2 . Это правило справедливо для ВРУ, в остальном следует руководствоваться нижеприведенной таблицей.
Сечение фазных проводников, мм 2
Наименьшее сечение защитных проводников, мм 2
S≤ 16
S
16
16
S>35
S/2
На защитный проводник РЕ нельзя устанавливать автоматы, другие устройства разъединения, он должен быть неотключаемым. Разделять совмещенный ноль PEN необходимо до автоматов и УЗО, после них нигде соединяться они не должны!
- защитный и нулевой контакты соединять в розетке перемычкой, т.к. при обрыве нуля на корпусах бытовых приборов появится опасное фазное напряжение;
- нулевой и защитный проводники соединять одним винтом (болтом) на шине в щитке;
- PE и N необходимо подключать к разным шинам, при этом, каждый провод из каждой квартиры должен быть прикручен своим винтом (болтом). Необходимо предусмотреть меры против ослабления крепления болтов и защиту их от коррозии и механических повреждений (пункт 1.7.139 ПУЭ 7).
Такое соединение применяют при современном электроснабжении жилых помещений или частных домов. Что соответствует требованиям ПЭУ- 7 (пункт 7.1.13) для сетей постоянного и переменного тока напряжением 220/380 вольт. После разделения объединять их категорически запрещается.
В частном доме зачастую мы получаем два или четыре провода от ВЛЭП. Чаще всего встречается 2 ситуации:
Ситуация №1 — хороший случай. Ваш электрощит стоит на опоре, под ней вбито повторное заземление. В электрощите две шины PE и N. К шине PE идёт ноль с опоры и провод от заземлителя. Между шиной PE и N перемычка, от шины N идёт рабочий ноль в дом, от шины PE – идёт защитный ноль в дом. Шины PE и N могут быть установлены в доме в распределительном щите, тогда ноль с землёй соединяется на одной шине в щите учета как на фото ниже.
Такие щиты сейчас часто собирают при подключении новых частных домов к электросети. При этом вводной автомат установлен на фазе, ноль с ВЛЭП идёт напрямую в счетчик, а разделение нуля (соединение с заземлителем) производится после него. Реже это делают и до счетчика, но зачастую энергосбыт против такого решения. Почему? Никто не знает, аргументируют возможностью хищения электроэнергии (вопрос, как?).
Если ВЛЭП старая – не нужно соединять ноль и землю (Глава 1.7. ПУЭ п. 1.7.59). Делайте систему ТТ (без соединения PE с N). В этом случае обязательно использовать УЗО!
В обоих ситуациях каждый провод на шинах должен быть затянут своим болтом — не суйте несколько PE или N-проводников под один болт (или винт).