Подключение счетчика через конденсатор
Подключение электродвигателя через конденсатор: расчет и схема
Тема очень востребованная и вызывающая множество вопросов. Для начала разберемся какие бывают асинхронные электродвигатели переменного тока и в каких случаях применяется подключение через конденсаторы. Затем рассмотрим схемы и формулы для выбора конденсаторов. Задача, которая стоит перед нами в этой статье: подключить трехфазный двигатель к однофазному питанию используя схему с конденсаторами. Для этого будет представлена схема и формулы для выбора значения емкостей конденсаторов.
Двигатели по способу питания делятся на трехфазные и однофазные. Вначале разберемся с подключением через конденсатор трехфазного ЭД.
Коротенько про трехфазные асинхронные электродвигатели
Трехфазные асинхронные электродвигатели получили широкое применение в различных отраслях промышленности, сельского хозяйства, быту. ЭД состоит из статора, ротора, клеммной коробки, щитов с подшипниками, вентилятора и кожуха вентилятора.
Стягивающие шпильки я уже снимать не стал, чтобы добраться до статора с ротором. Но выпирающая часть, на которой сидит вентилятор и есть ротор. Ротор — вращающаяся часть, статор неподвижная (на рисунке его не видно).
Далее посмотрим на клеммник более внимательно. С одной стороны у нас С1-С2-С3, а ниже — С4-С5-С6. Это начала и концы обмоток фаз электродвигателя. У нас имеются три фазы, так как двигатель трехфазный — С1-С4, С2-С5, С3-С6. Также присутствует на фото ржавый болт заземления, он находится в клеммнике сверху слева.
Соединение, которое видно на фотографии называется “звезда”. Я уже писал про звезду и треугольник для трансформаторов — аналогично и при подключении электродвигателей. Сбоку на фотографии я добавил как выглядит схематично звезда для данного электродвигателя и треугольник. Вся разница в расположении перемычек. Их комбинации определяют схему соединения ЭД.
работа трехфазного электродвигателя без одной фазы при постоянной нагрузке
Электродвигатель может работать от однофазной сети и без дополнительных мер и схем. Например, при повреждении одной из фаз. Однако, в данном случае произойдет снижение частоты вращения. Снижение частоты вращения приведет к увеличению скольжения, что в свою очередь вызовет увеличение тока двигателя.
А возрастание тока приведет к нагреву обмоток. При такой ситуации необходимо разгрузить ЭД до 50%. Работа в таком режиме возможна, однако, если двигатель остановится, то повторно пуститься уже не получится.
почему для пуска от однофазной сети используют именно конденсаторы
Повторный пуск не произойдет, так как магнитное поле статора будет пульсирующим и, коротко говоря, из-за направленности определенных векторов в противоположные стороны ротор будет неподвижен. Чтобы двигатель пустился, нам необходимо изменить расположение этих векторов. Для этого и используют элементы, которые сдвигают фазы векторов. Рассмотрим схему, которая реализует эту возможность.
На схеме мы видим, что обмотка разделилась на две ветви — пусковую и рабочую. Пусковая используется с начала пуска до разворота двигателя, затем отключается и используется только рабочая. Для отключения пусковой можно использовать кнопку, например. Нажал и держи пока не развернулся двигатель, а потом отпускай и цепочка разорвана.
Фазосдвигающими элементами могут выступать сопротивления или конденсаторы. Разница в применении тех или иных в форме магнитного поля. И если, говорить проще, то выбирают конденсаторы, так как при одном значении пускового момента, меньший пусковой ток будет при использовании конденсаторов.
А при одинаковых пусковых токах у схем с конденсатором будет больше начальный вращающий момент, то есть движок будет быстрее разгоняться, что несомненно лучше для эксплуатации.
Важно: подключение через конденсаторы производят для двигателей до 1,5кВ. Вычислено, что для более мощных ЭД стоимость емкостных элементов превысит стоимость самого движка, следовательно, их установка является нерентабельной. Хотя, если достать их нахаляву, что в нашем пространстве не редкость, то можно и попробовать.
как подключить электродвигатель через конденсатор
Так как конденсаторы выгоднее во многих смыслах для пуска ЭД, то разберем пару схемок пуска с применением конденсаторов. Для схемы соединения “треугольник” и для схемы соединения “звезда”.
Пусковая ветвь будет использоваться до момента разворота ЭД, рабочая — напротяжении всей работы двигателя.
конденсаторы для запуска электродвигателя
Логично будет далее разобраться, как рассчитать пусковой и рабочий конденсатор для двигателя. Для правильного подбора нам необходимо знать паспортные данные ЭД, или иметь шильду с заводскими значениями.
Существуют различные схемы и в каждой конденсаторы выбираются по своему. Для схем, приведенных выше расчет емкости конденсаторов осуществляется по двум формулам:
Рабочая емкость = 2800*Iном.эд/Uсети
Рабочая емкость = 4800*Iном/Uсети
Пусковая емкость в обоих случаях принимается равной 2-3 от рабочей.
В формулах выше Iном — это номинальный ток фазы электродвигателя. Если посмотреть на табличку, где через дробь указываются два тока, то это будет меньший из них. Uсети — напряжение питающей сети(
220). Значит, вычислили мы ёмкость и следующим шагом нам надо знать напряжение на конденсаторе. Для схем приведенных на рисунках выше напряжение на конденсаторе равняется 1,15 от напряжения сети. Но это напряжение переменного тока, а для выбора конденсаторов надо знать напряжение постоянного тока. Тут нам и понадобится небольшая табличка:
Например, напряжение сети
220, умножаем на 1,15 получаем 253. В таблице смотрим переменка 250 соответствует постоянке 400В для емкости до 2мкФ, или 600В для емкостей 4-10мкФ. Нужно, чтобы номинальное напряжение конденсатора было равно или больше расчетного.
Далее, зная рабочее напряжение и требуемую емкость подбираем конденсаторы по параметрам: типы и нужное количество. Конденсаторы для пусковой цепи порой так и называются — пусковыми.
Вот так, шаг за шагом, мы разобрали как подключить трехфазный асинхронный электродвигатель в однофазную сеть и что для этого необходимо рассчитать и знать. Существуют и другие схемы для подключения двигателя через конденсатор, но эти вопросы рассмотрим в другой раз в другой статье.
2020 Помегерим! — электрика и электроэнергетика
Асинхронные электрические машины
Самый распространённый тип. Такое название получили потому, что обороты ротора меньше, чем частота вращения магнитного поля статора — они не совпадают или асинхронны. Скорость вращения ротора зависит от частоты питания цепи и количества пар полюсов статора: при стандартной частоте в 50 Гц при одной паре обороты меньше трёх тысяч в минуту, при двух — полутора тысяч, при трёх парах полюсов обмотки мотор выдаст меньше тысячи в минуту.
Расщепление фаз
Если требуется включение трёхфазного двигателя в однофазную сеть нужно решить вопрос с недостающими фазами. Когда используется подключение трёхфазного двигателя к трёхфазной сети, то всё понято:
- На начало каждого сектора обмотки подаётся своя фаза.
- При соединении звездой концы секторов обмотки собраны вместе и замкнуты на ноль.
- При соединении треугольником конец одного сектора обмотки соединён с началом другого.
Успешная схема подключения трёхфазного электродвигателя на 220 В подразумевает наличие какого-то приспособления для получения необходимых характеристик питания цепи.
Вопрос расщепления фазы без введения в цепь ёмкостного сопротивления, которое, совместно с индуктивностью обмотки, создаёт колебательный контур, сдвигающий напряжение питания, решить нельзя. Повсюду используется схема подключения электродвигателя на 220 В через конденсатор.
Напряжение питания
На шильдике асинхронного двигателя могут указываться две цифры питающего напряжения 220/380 или просто одна — 380. Тут нужно разобраться с двумя типами значений напряжения питания в сети переменного тока:
- Максимальное напряжение.
- Действующее значение.
В каждой фазе стандартное максимальное значение составляет 380 В, но действующее значение будет иным — между нулём и фазой (соединение звездой) 220 В, а между фазами (соединение треугольником) — 380 В.
Изменение схемы подключения обмоток со звезды на треугольник решает вопрос, как подключить трёхфазный двигатель на 220.
Подбор конденсаторов
Для стабильной работы требуются неполярные конденсаторы с рабочим напряжением не менее 400 В. Для подсчёта необходимой ёмкости используются специальные формулы или онлайн-калькулятор. Они учитывают тип соединения обмоток, коэффициент мощности, мощность двигателя. При запуске под небольшой нагрузкой или без неё пусковое оборудование не требуется. При пуске нагруженного электродвигателя нужно кратковременное включение пусковых конденсаторов. Можно попытаться собрать схему из того, что есть в наличии, без точного расчёта. Конденсаторы должны удовлетворять следующим условиям:
- Ёмкость рабочих от 80 мкФ на 1 кВт мощности.
- Ёмкость пусковых в 2−3 раза выше рабочих.
Правильность подбора конденсаторов контролируется по внешним признакам: стабильный запуск и чёткая работа без излишнего перегрева. По возможности стоит замерить рабочие токи секторов обмотки, в идеале они должны быть одинаковы.
Трёхфазный счётчик
Электросчётчики разделяются на одно- и трехфазные и предназначены для сети с напряжением 220 В и 380 В соответственно. Как правило, однонаправленный учёт осуществляется в зданиях с небольшой потребляемой мощностью (10 кВт). При прочих равных условиях трёхфазный прибор выигрывает в главном — позволяет подключать такие приборы, как электрические обогреватели, индукционные и стеклокерамические варочные панели.
Относительным минусом такого прибора является обязательное получение разрешения на его установку. Также из-за его довольно крупных размеров необходимо позаботиться о том, где и как подключить 3х фазный счётчик. При выборе устройства стоит руководствоваться максимальными показателями силы тока, от которых будет зависеть способ его монтажа.
Преимуществами электросчётчика являются встроенный тарификатор и профиль мощности.
Варианты прибора
Такое устройство реально позволяет сэкономить, поскольку почти все его модели снабжены функцией дневной и ночной тарификации. В зависимости от потребностей можно выбрать электросчётчик с учётом места эксплуатации — для бытовых или производственных целей. Разделяют три вида 3-фазных счётчиков:
- прямого включения (подключаемые к сети);
- полукосвенного включения (подключаются с помощью трансформатора);
- косвенные (только через трансформаторы напряжения).
Подключение трёхфазного счётчика в частном доме, как и во многоэтажном, происходит по специальным схемам, которые существуют для каждого из перечисленных видов устройств.
Подключение устройства
Перед началом работ следует удостовериться, что монтажный план разработан верно, а также на электросчётчике присутствуют все необходимые пломбы. Прибор прямого включения прост в установке, но стоит внимательно изучить инструкцию к нему. Главная особенность подключения устройства — соблюдение цветового порядка подсоединения проводов.
Монтаж начинается с того, что проводники нужно освободить от изоляции, а затем подсоединить к выключателю. Следующим этапом станет подключение фазы. Работу стоит начинать от правого края прибора, вводя проводку с нечётных зажимов. К двум крайним контактам подключается «ноль». Трёхполюсные автоматы нужно установить после окончания подключения устройства.
Если говорить о том, как подключить счётчик трёхфазный полукосвенного включения, то нужно отметить, что перед началом работ необходимо установить разделительный трансформатор. Специалисты используют различные схемы подключения этого вида прибора, из которых часто используются всего три:
- десятипроводная, где первая тройка — фаза А, с 4—6 — В, следующие два — фаза С, а десятый — «ноль» (нейтральный);
- использование клеммной коробки;
- схема «звезда» — подключение с заземлением, где объединяют однополярные выходы и обмотку в общую точку, которая затем присоединяется к нейтральному проводу.
Схема подключения трёхфазного счётчика через трансформаторы тока применяется не только для того, чтобы иметь возможность пользоваться мощными электроприборами. Основная её задача — уменьшение первичных токов и напряжений до безопасного значения.
Косвенное включение предназначено для высоковольтных соединений и используется в производственных целях. Подобный вид счётчиков никогда не применяется в быту.
Трёхфазные приборы учёта обладают рядом существенных преимуществ в сравнении с однофазными моделями. Их главным плюсом являются простота устройства и монтажа.
Стоит отметить, что на небольших электродвигателях, используемых для бытовых нужд, например, для электроточила на 200-400 Вт, можно не использовать пусковой конденсатор, а обойтись одним рабочим конденсатором, я так делал уже не раз — рабочего конденсатора вполне хватает. Другое дело, если электродвигатель стартует со значительной нагрузкой, то тогда лучше использовать и пусковой конденсатор, который подключается параллельно рабочему конденсатору нажатием и удержанием кнопки на время разгона электродвигателя, либо с помощью специального реле. Расчет емкости пускового конденсатора осуществляется путем умножения емкостей рабочего конденсатора на 2-2.5, в данном калькуляторе используется 2.5.
При этом стоит помнить, что по мере разгона асинхронному двигателю требуется меньшая емкость конденсатора, т.е. не стоит оставлять подключенным пусковой конденсатор на все время работы, т.к. большая емкость на высоких оборотах вызовет перегрев и выход из строя электродвигателя.
Схема подключения электродвигателя без конденсаторов
Реально работающих схем подключения трехфазного двигателя в бытовую сеть 220 вольт без конденсаторов нет. Некоторые изобретатели предлагают подключать двигатели через индукционные катушки или сопротивления. Якобы, таким образом, создается сдвиг фаз на необходимый угол и двигатель вращается. Другие предлагают тиристорные схемы подключения. На практике это не работает, и не стоит изобретать велосипед. Когда есть дешевый и проверенный способ пуска посредством конденсаторов.
Действительно рабочим вариантом является подключение трехфазного асинхронного двигателя через преобразователь частоты. Преобразователь подключается в бытовую сеть и выдает трехфазный ток, причем с возможностью плавного пуска и регулировки оборотов. Но стоит такое чудо примерно от 7000 рублей с подключаемой мощностью всего в 250 ватт. Мощные приборы стоят гораздо дороже. За такие деньги можно приобрести электрооборудование с возможностью подключения к однофазной цепи. Будь то мини токарный станок, циркулярка, насос или компрессор.
Общие правила подключения электродвигателя через конденсатор.
Подключение электродвигателя 380В на 220В выполняется через конденсатор. Для такого подключения необходимо использовать бумажные (или пусковые) конденсаторы, при этом ВАЖНО чтобы номинальное напряжение конденсатора было больше либо равно напряжению сети (при этом рекомендуется что бы напряжение конденсатора было в 2 раза больше напряжения сети). Могут применяться конденсаторы следующих марок (типов):
МБГО, МБГЧ, МБГП, МБГТ, МБГВ, КБГ, БГТ, ОМБГ, K42-4, К42-19 и др.
Как правильно подобрать конденсаторы
Теоретически предполагается осуществлять расчет необходимой емкости путем деления силы тока на напряжение и полученную величину умножить на коэффициент. Для разного типа соединений обмоток коэффициент составляет:
звездой – 2800;
треугольником — 4800.
Недостатком этого метода является то, что не всегда на электродвигателе сохранилась табличка с данными. Невозможно точно знать коэффициент мощности и мощность двигателя, а следовательно и силу тока. К тому же на силу тока могут действовать такие факторы как отклонения напряжения в сети и величина нагрузки на двигатель.
Поэтому следует применять упрощенный расчет емкости рабочих конденсаторов. Просто учесть, что на каждые 100 ватт мощности необходимо 7 микрофарад емкости. Удобнее использовать несколько параллельно соединенных конденсаторов малой, желательно одинаковой емкости, чем один большой. Просто суммируя емкость собранных конденсаторов, можно легко определить и подобрать оптимальное значение. Для начала лучше процентов на десять занизить суммарную емкость.
Если двигатель легко запускается и мощности его достаточно для работы, то все подобрано правильно. Если нет – нужно еще подсоединять конденсаторы, пока двигатель не достигнет оптимальной мощности.
СПРАВКА. При подключении трехфазного асинхронного двигателя с короткозамкнутым ротором в однофазную сеть теряется не менее трети его мощности.
Следует помнить, что много не всегда хорошо, и при превышении оптимальной емкости рабочих конденсаторов двигатель будет перегреваться. Перегрев может привести к сгоранию обмоток и выходу электродвигателя из строя.
Варианты подключения однофазных асинхронных двигателей
Двигатели с пусковой обмоткой
Чтобы управлять работой асинхронным двигателем, имеющим пусковую обмотку, разработана специальная кнопка. Она состоит из трех контактов, один из которых отключается после включения устройства. Называется эта кнопка «ПНВС» и включает в себя средний контакт, который не фиксируется после включения и два крайних контакта с фиксацией.
Внешний вид кнопки ПНВС и состояние контактов после того как кнопка «пуск» отпущена
Если двигатель с пусковой обмоткой, то у него может быть 3 или 4 вывода. Измерив их сопротивление, можно узнать, какой из концов или каких 2 конца имеют отношение к пусковой обмотке.
У двигателя, имеющего 3 вывода, один из концов пусковой обмотки уже соединен с рабочей обмоткой. Как уже было сказано выше, рабочая обмотка всегда имеет меньшее сопротивление, по сравнению с пусковой. У двигателя с 4-мя выводами пусковую обмотку придется соединять с рабочей самостоятельно, на пусковой кнопке. В результате, получится также 3 вывода, которые принимают участие в работе двигателя:
- Один конец от рабочей обмотки.
- Другой конец от пусковой обмотки.
- Третий конец общий (соединение рабочей и пусковой обмотки).
Поэтому подключение таких двигателей ничем не отличается друг от друга, достаточно найти обмотки и соответствующим образом подключить их на реле ПНВС.
- Подключение однофазного двигателя с пусковой обмоткой посредством кнопки ПНВС.
Правильное подключение:
Три провода, выходящие из двигателя, подключаются так: провод, представляющий пусковую обмотку, крепится к среднему контакту (верхнему), а остальные два на крайние (тоже верхние) контакты. Питание 220 V подается на крайние контакты (нижние), при этом средний нижний контакт соединяется перемычкой с боковым контактом (нижним), который включает рабочую обмотку, но не общую, представляющую соединение рабочей и пусковой обмотки. В противном случае двигатель просто не запустится.
Конденсаторные двигатели
Существует три варианта (схемы) подключения конденсаторных двигателей к сети 220V. Без конденсаторов двигатель работать не будет. Он не запустится и будет гудеть. Такая длительная работа может привести к перегреву и выходу его из строя.
Первая схема связана с включением конденсатора в цепь питания конденсаторной обмотки. Подобная схема легко запускает двигатель, но его работа связана с низким К.П.Д. Схема, где конденсатор включен к цепи питания рабочей обмотки обладает лучшими показателями к.п.д., но при этом возникают проблемы с пуском двигателя. Поэтому первая схема используется для условий с тяжелым пуском, если при этом не требуются высокие рабочие характеристики.
Схема с двумя конденсаторами
Третий вариант подключения связан с установкой 2-х конденсаторов, поэтому схема представляет что-то среднее между вышеописанными двумя вариантами. Схема располагается в середине и более детально ее подключение представлено на фото ниже. Для реализации такой схемы включения потребуется кнопка ПНВС. Она необходима лишь для того, чтобы кратковременно подключать второй конденсатор, на время разгона двигателя. После отключения пускового конденсатора в работе останется две обмотки, причем пусковая обмотка должна быть подключена через конденсатор.
Подключение с двумя конденсаторами
Другие схемы подключения не требуют кнопки ПНВС, поскольку подключение конденсаторов фиксированное, на все время работы электродвигателя. Поэтому достаточно воспользоваться обычным автоматическим выключателем с фиксацией включенных контактов.