Gazmarket59.ru

Газ Маркет 59
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Расчет тепловыделения от тока

Теплообменный аппарат – это устройство, обеспечивающее передачу тепла между средами, разнящимися по температуре. Для обеспечения тепловых потоков различного количества конструируются разные теплообменные устройства. Они могут иметь разные формы и размеры в зависимости от требуемой производительности, но основным критерием выбора агрегата является площадь его рабочей поверхности. Она определяется с помощью теплового расчета теплообменника при его создании или эксплуатации.

Расчет может нести в себе проектный (конструкторский) или проверочный характер.

Конечным результатом конструкторского расчета является определение площади поверхности теплообмена, необходимой для обеспечения заданных тепловых потоков.

Проверочный расчет, напротив, служит для установления конечных температур рабочих теплоносителей, то есть тепловых потоков при имеющейся площади поверхности теплообмена.

Соответственно, при создании устройства проводится конструкторский расчет, а при эксплуатации – проверочный. Оба расчета идентичны и, по сути, являются взаимообратными.

  • Отправить тему по email
  • Версия для печати

Расчет тепловыделения и подбор вентиляции шкафа управления

Сообщение sDkit » 22 янв 2020, 23:15

Всем добрый день. Сижу кубатурю над охлаждением шкафа управления.
Имеем:
1. 3 драйвера Leadshine AM882 в режиме 3,93А/5,5А, запитаны от БП 70 В 1200 Вт
2. 1 драйвер Leadshine AM882 в режиме 3,93А/5,5А, запитан от БП 36В 400 Вт

Шкаф металл 650х500х220. Теплопотери через теплоотдачу от стенок шкафа очень малы (менее 50 Вт) на фоне общего тепловыделения, поэтому им пренебрегаем.

Считаю тепловыделение.
С драйверов:
70 В * 3,93 А * 3 = 825,3 Вт
36 В * 3,93 А = 141,8 Вт
С блоков питания:
Грубо взял 25% от выдаваемой на драйвера мощности на тепловые потери
Итого:
(825,3 * 141,8) * 1,25 = 1209 Вт

Далее считаю необходимый расход воздуха:

3,1 * 1209 Вт / (35 °С — 25 °С) = 375 м3/ч,

где 3,1 — коэффициент, соответствующий высоте над уровнем моря;
35 °С — необходимая температура в шкафу
25 °С — планируемая максимальная температура в помещении

Собственно, теперь вопросы:
1. Правильно я считаю тепловыделение? Особенно смущает подсчет от драйверов, у меня он принят равным потребляемой мощности. Ну и блок питания я хз, правильно ли это
2. Верен ли расчет производительности охдаждения?
3. Кто вообще как подходит к вопросу охлаждения и есть ли примеры работы на подобных компонентах?
4. У кого сколько живут вентиляторы? И какие испольуете

Re: Расчет тепловыделения и подбор вентиляции шкафа управлен

Сообщение xvovanx » 23 янв 2020, 00:53

Re: Расчет тепловыделения и подбор вентиляции шкафа управлен

Сообщение sDkit » 23 янв 2020, 09:45

Re: Расчет тепловыделения и подбор вентиляции шкафа управлен

Сообщение Сергей Саныч » 23 янв 2020, 10:14

Оценка тепловыделения, мягко говоря, завышена.
Если у вас в шкафу только драйверы и БП, то лучше плясать от мощности, потребляемой ШД. А при таком токе она будет в районе 100-150Вт. Четыре ШД — грубо говоря, ватт 500. КПД драйверов — процентов 80-95. Примем 80. Тогда потребление от БП будет 625Вт
КПД нормальных импульсных БП — 90 процентов и выше. То есть потребление от сети — около 700 Вт. Итого: имеем на выходе 500Вт, на входе — 700, в тепло в шкафу уходит 200.
И даже это сильно завышенная оценка.

Читайте так же:
Тепло выключатель сделай сам

Здесь один из возможных примеров.
Ток ШД примерно сопоставим, правда, в станке 3 двигателя, а не 4. Зато в щит 400х500х220 запихнуты:
— 4-х канальный драйвер-контроллер PL-545 (далеко не верх совершенства, но свою функцию выполняет, и неплохо)
— Блок питания драйвера 42В, номинальная мощность 400Вт
— Компьютер в составе: Материнская плата с процессором и памятью, HDD, БП на 350Вт
— ЖК дисплей 15″
— Частотный преобразователь на 1500Вт.
— всякая мелочь, типа дампера.

Охлаждается все это хозяйство на продув по диагонали обычным компьютерным кулером 120 мм. За 7 с лишним лет работы он один раз был заменен.
Перегрев (T воздуха на выходе — T воздуха на входе) не выше 5 градусов.

Главные формулы теплопередачи.

Формулы очень просты.

Количество теплоты Q в Дж рассчитывается по формулам:

1. Со стороны потребления тепла, то есть со стороны нагрузки:

1.1. При нагревании (охлаждении):

Q = m * c *( Т2 — Т1 )

m масса вещества в кг

с – удельная теплоемкость вещества в Дж/(кг*К)

1.2. При плавлении (замерзании):

Q = m * λ

λ удельная теплота плавления и кристаллизации вещества в Дж/кг

1.3. При кипении, испарении (конденсации):

Q = m * r

r удельная теплота газообразования и конденсации вещества в Дж/кг

2. Со стороны производства тепла, то есть со стороны источника:

2.1. При сгорании топлива:

Q = m * q

q удельная теплота сгорания топлива в Дж/кг

2.2. При превращении электроэнергии в тепловую энергию (закон Джоуля — Ленца):

Q = t * I * U = t * R * I ^2=( t / R ) * U ^2

t время в с

I действующее значение тока в А

U действующее значение напряжения в В

R сопротивление нагрузки в Ом

Делаем вывод – количество теплоты прямо пропорционально массе вещества при всех фазовых превращениях и при нагреве дополнительно прямо пропорционально разности температур. Коэффициенты пропорциональности ( c , λ , r , q ) для каждого вещества имеют свои значения и определены опытным путем (берутся из справочников).

Тепловая мощность N в Вт – это количество теплоты переданное системе за определенное время:

Чем быстрее мы хотим нагреть тело до определенной температуры, тем большей мощности должен быть источник тепловой энергии – все логично.

Теплопритоки (теплопоступления) через стены и другие ограждающие конструкции

На сегодня теплопритоки через ограждающие конструкции – это самое маленькое слагаемое в сумме теплопритоков благодаря активному развитию отрасли строительных материалов и появлению по-настоящему энергосберегающих технологий.

К ограждающим конструкциям в помещении относят наружные стены, окна и кровлю, если этажом выше нет других помещений. Теплоприток через ограждающие конструкции зависит от следующих факторов:

  1. Толщина и материал стен
  2. Толщина и структура оконных блоков
  3. Толщина и материал кровельного пирога для помещений на последнем этаже.

Теплоприток через ограждающие конструкции определяется как сумма теплопритоков через ограждения (стена/окно/кровля), каждое из которых рассчитывается по формуле:

  • Sок – площадь рассматриваемой стены/окна/кровли (м 2 ),
  • dT – разность наружной и внутренней температуры (°С),
  • r – термическое сопротивление ограждающей конструкции (°С·м 2 /Вт).
Читайте так же:
Тепловой импульс при расчете тока кз

Величина r берется из технических данных производителя материала стен или рассчитывается по формуле:

  • α – коэффициент теплоотдачи наружного материала стены,
  • δ1, δ2 . δm – толщина слоев, образующих стену,
  • δ1, δ2 . δm – теплопритоводность материалов слоев, образующих стену,
  • αn – коэффициент теплоотдачи внутреннего материала стены

Упрощенно для окон можно принимать r=0,4 °С·м 2 /Вт; для энергоэффективных стен r=5 °С·м 2 /Вт.

Расчет тепловыделения от тока

Все электронные компоненты выделяют тепло, поэтому умение рассчитывать радиаторы так, чтобы не пролетать в прикидках на пару порядков очень полезно любому электронщику.

Тепловые расчеты очень просты и имеют очень много общего с расчетами электронных схем. Вот, посмотрите на обычную задачу теплового расчета, с которой я только что столкнулся

Задача

Нужно выбрать радиатор для 5-вольтового линейного стабилизатора, который питается от 12вольт максимум и выдает 0.5А. Максимальная выделяемая мощность получается (12-5)*0.5 = 3.5Вт

Погружение в теорию

Для того, чтобы не плодить сущностей, люди почесали тыковку и поняли, что тепло очень похоже на электрической ток, и для тепловых расчетов можно использовать обычный закон Ома, только

В итоге, закон Ома заменяется на свой тепловой аналог:

Небольшой замечание – для того, чтобы обозначить, что имеется ввиду тепловое (а не электрическое) сопротивление, к букве R, дописывают букву тэта:на клавиатуре у меня такой буквы нет, а копировать из таблицы символов лень, поэтому я буду пользоваться просто буквой R.

Продолжаем

Тепло выделяется в кристалле стабилизатора, а наша цель – не допустить его перегрева (не допустить перегрева именно кристалла, а не корпуса, это важно!).

До какой температуры можно нагревать кристалл, написано в даташите:

Обычно, предельную температуру кристалла называют Tj (j = junction = переход – термочувствительные внутренности микросхем в основном состоят из pn переходов. Можно считать, что температура переходов равна температуре кристалла)

Без радиатора

Попробуем рассчитать, до какой температуры нагреется кристалл, если не ставить радиатор.

Тепловая схема выглядит очень просто:

Специально для случаев использования корпуса без радиатора, в даташитах пишут тепловое сопротивление кристалл-атмосфера (Rj-a) (что такое j вы уже в курсе, a = ambient = окружающая среда)

Заметьте, что температура “земли” не нулевая, а равняется температуре окружающего воздуха (Ta). Температура воздуха зависит от того, в каких условиях находится радиатор Если стоит на открытом воздухе, то можно положить Ta = 40 °C, а вот, если в закрытой коробке, то температура может быть значительно выше!

Записываем тепловой закон Ома: Tj = P*Rj-a + Ta. Подставляем P = 3.5, Rj-a = 65, получаем Tj = 227.5 + 40 = 267.5 °C. Многовато, однако!

Цепляем радиатор

Тепловая схема нашего примера со стабилизатором на радиаторе становится вот такой:

    Rj-c – сопротивление от кристалла до теплоотвода корпуса (c = case = корпус ). Дается в даташите. В нашем случае – 5 °C/Вт – из даташита
Читайте так же:
Если укоротить провод теплого пола

Rc-r – сопротивление корпус-радиатор. Тут не все так просто. Это сопротивление зависит от того, что находится между корпусом и радиатором. К примеру, силиконовая прокладка имеет коэффициент теплопроводности 1-2 Вт/(м*°C), а паста КПТ-8 – 0.75Вт/(м*°C). Тепловое сопротивление можно получить из коэффициента теплопроводности по формуле:

R = толщина прокладки/(коэффициент теплопроводности * площадь одной стороны прокладки)

Часто Rc-r вообще можно игнорировать. К примеру, в нашем случае (используем корпус TO220, с пастой КПТ-8, средняя глубина пасты, взятая с потолка – 0.05мм). Итого, Rc-r = 0.5 °C/Вт. При мощности 3.5вт, разница температур корпуса стабилизатора и радиатора — 1.75градуса. Это – не много. Для нашего примера, возьмем Rc-r = 2 °C/Вт

Подставляем все эти данные в закон Ома, и получаем Tj = 3.5*(5+2+12.5) + 40 = 108.25 °C

Это значительно меньше, чем предельные 150 °C. Такой радиатор можно использовать. При этом, корпус радиатора будет греться до Tc = 3.5*12.5 + 40 = 83.75 °C. Такая температура уже способна размягчить некоторые пластики, поэтому нужно быть осторожным.

Измерение сопротивления радиатор-атмосфера.

Скорее-всего, у вас уже валяется куча радиаторов, которые можно задействовать. Тепловое сопротивление измеряется очень легко. Это этого нужно сопротивление и источник питания.

Лепим сопротивление на радиатор, используя термопасту:

Подключаем источник питания, и выставляем напряжение так, чтобы на сопротивлении выделялась некая мощность. Лучше, конечно, нагревать радиатор той мощностью, которую он будет рассеивать в конечном устройстве (и в том положении, в котором он будет находиться, это важно!). Я обычно оставляю такую конструкцию на пол часа, чтобы она хорошо прогрелась.

После того, как измерили температуру, можно рассчитать тепловое сопротивление

Rr-a = (T-Ta)/P. К примеру, у меня радиатор нагрелся до 81 градуса, а температура воздуха – 31 градус. таким образом, Rr-a = 50/4 = 12.5 °C/Вт.

Прикидка площади радиатора

В древнем справочнике радиолюбителя приводился график, по которому можно прикинуть площадь радиатора. Вот он:

Работать с ним очень просто. Выбираем перегрев, который хочется получить и смотрим, какая площадь соответствует необходимой мощности при таком перегреве.

К примеру, при мощности 4вт и перегреве 20 градусов, понадобится 250см^2 радиатора. Этот график дает завышенную оценку площади, и не учитывает кучу факторов как то принудительный обдув, геометрия ребер, итп.

> если в закрытой коробке, то температура может быть значительно выше!

Температура в коробке считается совершенно так же, просто в цепочку добавляются дополнительные сопротивления — стенок, прослойки воздуха в корпусе, перехода стенка-атмосфера…

Елси коробка находится на прямом солнечном свету, то ГОСТ 15150 (который про климатические исполнения) рекомендует к температуре окружающей среды тупо прибавить 15 градусов , если оболочка имеет белый или серебристо-белый цвет, и 30 градусов при любом другом.

Впрочем, нагрев солнцем тоже можно учесть, зная поглощающую способность поверхности и энергию солнечного излучения.

>Температура в коробке считается совершенно так же
Это да, но нужно учесть тепловыделение ВСЕХ компонентов схемы.

>тупо прибавить 15 градусов
Спасибо, не знал!

> I=U*R
ошибочка U=I*R , а I=U/R

Читайте так же:
Номинальный ток теплового расцепителя автомата

>>>К примеру, при мощности 4вт и перегреве 20 градусов, понадобится 150см^2 радиатора

промазали с пересечением, понадобится 250см^2 радиатора

и спасибо за статью)

Сергей, спасибо за статью! очень пригодилась!

> Tj = P*Rj-a + Ta.
> Подставляем P = 3.5, Rj-a = 65, получаем Tj = 227.5 + 40 = 227.5 °C.

Где-то читал, что срок службы кремниевых полупроводниковых приборов при температуре кристалла 60 градусов составляет 50-75 лет, при температуре 125 градусов — 1000 часов. Интересно, при какой температуре полупроводник прослужит 100 000 часов. Нигде не могу найти зависимость срока службы от температуры. Кто-нибудь может добавить полезной информации?

Обычно все подобного рода процессы экспоненциальны. Так как ты знаешь два числа, легко можешь посчитать коэффициенты при экспоненте.

Спасибо, за идею измерения теплового сопротивления радиаторов. Почему-то сам не догадался и не попадалась раньше.
Но думаю реализация требует некоторого уточнения.
Резистор при нагреве «отдаёт тепло» по всем 4-м граням равномерно в отличии от полупроводниковых элементов (конструкция которых обычно оптимизируется для передачи бОльшей части тепла именно радиатору), а это значит, что из рассеиваемой на резисторе мощности радиатором будет получена далеко не вся мощность, что приведёт к значительному занижению полученного значения теплового сопротивления (завышение теплорассеивающей способности радиатора, что нехорошо).
Как вариант либо теплоизолировать свободные грани резистора например силиконовым герметиком толщиной в несколько миллиметров, либо применить в качестве нагревателей биполярные или полевые транзисторы в связке с ОУ (генератор стабильного тока), тем более, что при этом не будет возникать сложность с креплением нагревателя на радиаторе.
С уважением, Вячеслав.

Создать новую ветку комментариев

Вы должны войти или зарегистрироваться чтобы оставить комментарий.

Необходимость расчета тепловой мощности системы отопления

Потребность в вычислении тепловой энергии, необходимой для обогрева комнат и подсобных помещений, связана с тем, что нужно определить основные характеристики системы в зависимости от индивидуальных особенностей проектируемого объекта, включая:

  • назначение здания и его тип;
  • конфигурацию каждого помещения;
  • количество жильцов;
  • географическое положение и регион, в котором находится населенный пункт;
  • прочие параметры.

Расчет необходимой мощности отопления является важным моментом, его результат используют для вычисления параметров отопительного оборудования, которое планируют установить:

  1. Подбор котла в зависимости от его мощности. Эффективность функционирования отопительной конструкции определяется правильностью выбора нагревательного агрегата. Котел должен иметь такую производительность, чтобы обеспечить обогрев всех помещений в соответствии с потребностями людей, проживающих в доме или квартире, даже в наиболее холодные зимние дни. Одновременно при наличии у прибора избыточной мощности часть вырабатываемой энергии не будет востребована, а значит, некоторая сумма денег потратится напрасно.
  2. Необходимость согласовывать подключение к магистральному газопроводу. Для присоединения к газовой сети потребуется ТУ. Для этого подают заявку в соответствующую службу с указанием предполагаемого расхода газа на год и оценкой тепловой мощности в сумме для всех потребителей.
  3. Выполнение расчетов периферийного оборудования. Расчет тепловых нагрузок на отопление необходим для определения длины трубопровода и сечения труб, производительности циркуляционного насоса, типа батарей и т.д.
Читайте так же:
Выключатели теплого пола abb

Калькулятор расчета необходимой тепловой мощности для отопления помещений

Пояснения по проведению расчетов

Последовательно уносим данные в поля калькулятора.

  • Первым делом определим климатические особенности – указанием примерной минимальной температуры, свойственной региону проживания в самую холодную декаду зимы. Естественно, речь идет о нормальной для своего региона температуре, а не о каких-то «рекордах» в ту или иную стороны.

Кстати, понятное дело, это поле не будет меняться при расчетах для всех помещений дома. В остальных полях – возможны вариации.

  • Далее идет группа из двух полей, в которых указываются площадь помещения (точно) и высота потолков (выбор из списка).
  • Следующая группа данных учитывает особенности расположения помещения:

Количеств внешних стен, то есть контактирующих с улицей (выбор из списка, от 0 до 3).

Расположение внешней стены относительно стороны света. Есть стены, регулярно получающие заряд тепловой энергии от солнечных лучей. Но северная стена, например, солнца не видит вообще никогда.

Главный редактор проекта Stroyday.ru. Инженер.

— Если на местности, где расположен дом, выражено преобладание какого-то направления зимнего ветра (устойчивая роза ветров), то это тоже можно принять во внимание. То есть указать, находится ли внешняя стена на наветренной, подветренной или параллельной направлению ветра стороне. Если таких данных нет, то оставляем по умолчанию, и программа рассчитает, как для самых неблагоприятных условий.

— Далее, указывается, насколько утеплены стены. Выбирается из трех предложенных вариантов. Точнее даже, из двух, так как в доме с вообще неутепленными стенами затевать отопление — абсолютная бессмыслица.

— Два схожих поля поросят указать, с чем соседствует помещение «по вертикали», то есть что расположено сверху и снизу. Это поможет оценить размеры теплопотерь через полы и перекрытия.

  • Следующая группа касается окон в помещении. Здесь важно и их количество, и размеры, и тип, в том числе – особенности стеклопакетов. По совокупности этих данных программа выработает поправочный коэффициент к результату расчетов.
  • Наконец, на количество теплопотерь серьёзно влияет наличие в комнате дверей, выходящих на улицу, на балкон, в холодный подъезд и т.п. Если дверями регулярно в течение дня пользуются, то любое их открытие сопровождается притоком холодного воздуха. Понятно, что это требует возмещения в форме дополнительной тепловой мощности.

Все данные внесены – можно «давить на кнопку». В результате пользователь сразу получит искомое значение тепловой мощности для конкретного помещения.

Как уже говорилась, сумма всех значений даст результат за весь дом (за квартиру) в целом, в киловаттах.

По этой величине, считая ее минимумом, подбирают, кстати, и котел отопления. И именно эта суммарная величина понадобится, когда придёт время считать реальные денежные расходы на эксплуатацию системы отопления.

А данные по каждой из комнат тоже весьма полезны — для подбора и расстановки радиаторов отопления, или для выбора подходящей модели электрического обогревателя.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector