Gazmarket59.ru

Газ Маркет 59
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Расчет вторичных цепей счетчика

Как выбрать трансформатор тока — по мощности

Суммарный нагрузочный ток на линию жилого, коммерческого объекта или предприятия в некоторых случаях может превышать ее фактические возможности. Правильный расчет трансформатора тока поможет обеспечить качество линейного преобразования, контроль и защиту электросети.

  1. Причины для установки токовых трансформаторов
  2. Разновидности трансформаторов тока
  3. Назначение
  4. Тип монтажа
  5. Конструкция первичной обмотки
  6. Тип изоляции
  7. Класс точности
  8. Особенности выбора
  9. Подбор токового трансформатора для организации релейной защиты
  10. Нюансы выбора устройств для цепи учета
  11. Таблица предварительного выбора трансформатора тока по мощности и току
  12. Надежность измерительных трансформаторов напряжения в сети с изолированной нейтралью
  13. Расчет трансформатора тока по мощности
  14. Пример расчета на 10 кВ

Обрыв электрической цепи — это прекращение прохождения тока по электрической цепи.

Обрывы в электрических цепях, это отсоединения провода от аппарата без касания им корпуса, нарушение контакта в кнопках, контактной системе реле, контакторных элементах контроллера машиниста из-за запылённости, слабого нажатия контактов или их подгара. Загрязнение медных сегментов блокировочных устройств силовых аппаратов, слабое нажатие блокировочных контактов, отгибание или их излом. Выплавление наконечников проводов силовой цепи из-за недостаточного нажатия контактов аппаратов этой цепи. Невключение аппарата из-за механической неисправности привода, замерзания смазки в нем, недостаточного давления сжатого воздуха или отсутствие воздуха в приводе аппарата. Признаком обрыва электрической цепи и её последствием является то, что не собирается одна из цепей, при этом возможна «звонковая» работа одного из аппаратов.

Соединение проводов между собой является наиболее редко встречающейся неисправностью электрических цепей. Соединение проводов между собой происходит из-за перетирания их изоляции в пучках проводов в местах их перегиба около клеммовых реек, в пультах машиниста или контроллере машиниста. Кроме этого, данная неисправность возникает из-за соединения наконечников проводов на клеммах аппаратов, соединения блокировочных пальцев из-за ослабления их крепления или соединения их посторонним предметом. Соединение проводов выражается в том, что при сборе той или иной электрической цепи, включается один или несколько аппаратов, включение которых не предусмотрено схемой этой цепи.

«56.Вопрос. Последовательность действий локомотивной бригады при обнаружении и устранение неисправностей в электрических цепях».

Все работы по обнаружению и устранению неисправностей в электрических цепях электровозов ВЛ11 и ВЛ11м локомотивная бригада обязана выполнять с точным соблюдениемправил и инструкций по технике безопасности ЦТК-8 / 126, ЦТ-555, правил пожарной безопасности ЦУО / 175 и инструкции по техническому обслуживанию электровозов и тепловозов в эксплуатации № ЦТ-685. При возникновении короткого замыкания в крышевом оборудовании, повреждении контактной сети и токоприёмника электровоза свои действия по обнаружению короткого замыкания и устранению неисправности локомотивная бригада должна согласовать с энергодиспетчером и руководствоваться инструкциями № ЦТ-ЦЭ / 844 и № ЦТ-ЦЭ / 860 от 09. 10. 01 г.

В зависимости от характера возникшей неисправности в электрической цепи, профиля пути, веса поезда, погодных условий и поездной обстановки локомотивная бригада должна принять одно из решений:

· Первое — обнаружить и устранить неисправность при движении по перегону

с безусловным соблюдением безопасности движения поездов.

При этом приступать к определению или устранению неисправности разрешается без выхода машиниста из кабины и только после взаимного дублирования с помощником машиниста по форме: “Отвлекаюсь от наблюдения — веду наблюдение». Перед выходом помощника из кабины, по указанию машиниста, для сбора аварийной схемы на клеммовой рейке дублирование производится по этой же форме.

· Второе – обнаружить и устранить неисправность после остановки на наиболее легком профиля пути или на станции.

Запрещается заниматься обнаружением и устранением неисправности при запрещающем показании светофора, при подходе к местам ограничения скорости и следования по ним, при подходе к станциям и в условиях плохой видимости.

Читайте так же:
Заявление отказ от общедомового счетчика

После сбора аварийной схемы применение рекуперативного торможения запрещается.

Проследование ближайшей станции на проход при неоднократных срабатываниях аппаратов защиты запрещается, не выяснив причину их срабатывания.

Затребование вспомогательного локомотива должно быть выполнено не позднее, чем через 10 минут после остановки поезда на перегоне.

При этом локомотивная бригада должна руководствоваться пунктом 7.2 Инструкции по движению поездов и маневровой работе и пунктами 16.43 — 16.49 ПТЭ.

После затребования вспомогательного локомотива протягивается скоростемерная лента, наполняются сжатым воздухом запасные резервуары токоприемников РС7, если они не были наполнены при движении, или главные резервуары, и только после этого приступают к обнаружению и устранению неисправности. Если же неисправность обнаружена и устранена, т.е. отпала необходимость во вспомогательном локомотиве, локомотивная бригада обязана доложить об этом через ДСП поездному диспетчеру, отказаться от вспомогательного локомотива с указанием времени готовности и вновь протянуть скоростемерную ленту.


Последовательность расчета сечения проводников

Так как мы рассчитываем проводку для своего дома, то в нашей статье мы попытаемся привести и учесть и другие нормы ПУЭ, касающиеся частных домовладений и квартир.

Главным из них для нас является п.6.2.2 ПУЭ, который нормирует, что в квартирах и домах все групповые линии должны питаться от автоматических выключателей на ток не более 25А. Исходя из этого, и провода для питания таких групповых сетей не должны рассчитываться на больший ток. Исключение составляет только расчет проводов ввода питания на квартиру.

Расчет номинальной мощности

Исходя из всего вышесказанного, главным критерием для нас является мощность приборов, подключаемых к сети. Именно поэтому расчет стоит начать с суммарной нагрузки.

Прежде всего, считаем мощные потребители, такие как: кондиционеры, электрические печи, электронагреватели и бойлеры. Если мощность таковых приборов превышает 1,5 – 2кВт, то целесообразно рассмотреть их питание отдельной линией.

  • Если вы делаете расчет своими руками, то желательно отдельно посчитать суммарную мощность электроприборов и сети освещения.

  • Если у вас есть мощные бытовые приборы, то их не учитывайте при подсчете суммарной мощности. Для них мы выделим отдельную линию.
  • При расчёте принимайте подключение к каждой розетке самого мощного электроприбора. При этом маломощную видео и другую бытовую технику можно округлить. Главное, не посчитайте один и тот же прибор дважды.
  • В большинстве случаев суммарная нагрузка будет около 3-5кВт на каждую жилую комнату. Не пугайтесь таких цифр.
  • Если количество розеток в квартире превышает 10, то суммарную нагрузку, согласно п.4.4 ВСН 59-88, умножаем на поправочный коэффициент 0,9. Если розеток больше 20, — на 0,8.

Расчет номинального тока

Так как у нас имеется только формула расчета сечения провода по току, то переводим мощность в номинальный ток.

Для этого используем формулу: I=P/U×cosα, где I – наш номинальный ток; P – полученная у нас суммарная мощность, U – номинальное напряжение сети (для однофазной сети 220В, для трехфазной сети 380В); а cosα – коэффициент мощности.

Если вы найдете его на всех приборах, то можете получить путем умножения суммарный коэффициент мощности. А можно пренебречь им и принять его равным единице, это создаст определенный запас нашим расчетам.

  • Приведем пример. Допустим, суммарная мощность у нас получилась 10кВт. Приняв коэффициент мощности равный единице, для однофазной сети получаем номинальный ток равный 45,45А.

Обратите внимание! Расчет сечения провода по току 12В, 24В, 36В, 42В и 110В осуществляется по этой же формуле.

  • Исходя из этого, можно выбрать провод, который будет питать наш распределительный щит. Согласно табл. 1.3.4 ПУЭ, при отрытом способе прокладки нам потребуется медный провод сечением 5 мм 2 или, согласно табл.1.3.5 ПУЭ, алюминиевый провод сечением 8 мм 2 .
Читайте так же:
Счетчик километров для велосипеда механический

  • Но как мы уже отмечали, питание электроприборов в квартире должно осуществляться от автоматических выключателей на ток не более 25А. Поэтому в нашем случае мы разделяем нагрузки на две группы, питающихся от автоматов по 25А, либо на три группы, питающиеся от автоматов на 16А. Здесь уже определяющим становится цена материалов и удобство, поэтому перед нами открывается свобода выбора.

Влияние на расчет остальных параметров

Но расчет сечения проводов по току на этом не заканчивается. Теперь нам следует учесть все дополнительные параметры и возможные условия прокладки.

  • Если предполагается, что ваши провода будут улаживаться пучками, то к номинальным токам, указанным в таблицах, следует применить поправочные коэффициенты. Так, согласно п.1.3.10 ПУЭ, если количество проводов в пучке больше 4-х, то коэффициент будет 0,68. Если больше 6, то 0,63, если больше десяти, то 0,6.
  • Если предполагается, что провода будут проложены в помещениях или на улице, где средняя температура отличается от +15⁰С, то следует воспользоваться температурными поправочными коэффициентами из таблицы 1.3.3 ПУЭ.

Обратите внимание! Для кабелей в полиэтиленовой изоляции допускается кратковременная не более 6 часов за 5 дней перегрузка в 10% от номинального тока. Для кабелей с поливинилхлоридной изоляцией такая перегрузка может достигать 15%.

Классификация электрических цепей

По назначению электрические цепи бывают:

  • Силовые электрические цепи;
  • Электрические цепи управления;
  • Электрические цепи измерения;

Силовые цепи предназначены для передачи и распределения электрической энергии. Именно силовые цепи ведут ток к потребителю.

Также цепи разделяют по силе тока в них. Например, если ток в цепи превышает 5 ампер, то цепь силовая. Когда вы щелкаете чайник, включенный в розетку, Вы замыкаете силовую электрическую цепь.

Электрические цепи управления не являются силовыми и предназначены для приведения в действие или изменения параметров работы электрических устройств и оборудования. Пример цепи управления – аппаратура контроля, управления и сигнализации.

Электрические цепи измерения предназначены для фиксации изменений параметров работы электрического оборудования.

Рассмотрим пример проверки трансформатора тока на 10% погрешность.

К трансформатору тока подключен терминал типа 7SJ80 в котором задействована максимальная токова защита и токовая отсечка. Уставка срабатывания токовой отсечки Iсраб.то = 3150 А. Схема соединения трансформаторов тока – полная звезда. Максимальное значение тока КЗ в месте установки защиты IКЗ.макс = 12,45 кА. Терминал релейной защиты устанавливается в релейном отсеке шкафа КРУ и соединяется с трансформаторами тока медными проводами сечением 2,5 мм 2 .

Проверка

1. По информации на устройство 7SJ80 находим потребляемую им мощность по токовым цепям.

2. Переводим потребляемую мощность в Омы

3. Находим сопротивление проводов от ТТ к терминалу защиты. Поскольку терминал устанавливается в релейном отсеке шкафа КРУ принимаем длину проводом 5 м.

4. Для схемы соединения трансформаторов тока и вторичной нагрузки “полная звезда” используя формулы таблицы 1 находим фактическую вторичную нагрузку трансформатора тока.

Так как мы достоверно не знаем, какой потребитель получает питание от защищаемого присоединения, рассчитываем на худший случай. Максимальная вторичная нагрузка для схемы соединения ТТ “полная звезда” будет для однофазного КЗ, его и примем в качестве расчетного.

5. Определим фактический коэффициент предельной кратности. Для этого сначала переведем номинальную вторичную нагрузку трансформатора тока из ВА в Омы

Определим минимально необходимый коэффициент предельной кратности для максимальной токовой защиты

Следовательно, минимально необходимый коэффициент предельной кратности должен быть больше либо равен 20. Фактический коэффицент предельной кратности при ТТ с Кном= 10 согласно расчету составляет

Читайте так же:
Excel при нажатии счетчик

Кпк.факт = 14,64 2 перв = 15 / 5 2 = 0,6 Ом

Проверка на предел измерения

Автор статьи, инженер-проектировщик систем релейной защиты станций и подстанций

Примеры расчёта заземляющего устройства

Привёдем несколько примеров для расчёта заземления:

Любой предварительный расчёт заземления сводится к определению сопротивления растекания тока заземлителя в соответствие с требованием ПУЭ, как уже отмечалось ранее, а также на количество требуемых материалов и затрат на изготовления заземляющего устройства (бурение, ручная забивка заземлителей, сварочные работы, электромонтажные работы).

Так же отметим, что любой расчёт начинается с расчёта одиночного заземлителя, одиночный заземлитель применяется в основном для повторного заземления ВЛ опор , где требования ПУЭ (п. 1.7.103.) общее сопротивление растеканию заземлителей должно быть не более 15, 30 и 60 Ом соответственно при тех же напряжениях: 660, 380 и 220 В.
1.
Пример расчёта одиночного заземлителя для опоры ВЛ 380 В:

Выбираем арматуру из таблицы 1 для вертикальных заземлителей — круглую сталь ø 16 мм., длиной L — 2,5 м.В качестве грунта примем глину полутвердую (см. таблицу 5) с удельным сопротивлением ρ — 60 Ом·м. Глубина траншеи равна 0,5 м. Из таблицы 6 возьмем повышающий коэффициент для третей климатической зоны и длине заземлителей до 2,5 м. с коэффициентом промерзания грунта для вертикальных электродов ψ — 1,45. Нормированное сопротивление заземляющего устройства равно 30 Ом. Фактическое удельное сопротивление почвы вычислим по формуле: ρфакт = ψ·ρ = 1.45 · 60 = 87 Ом·м. Примечание: расчёт одиночного заземлителя проводим без учёта горизонтального сопротивления заземления.

Расчет:

а) заглубление равно (рис. 2): h = 0,5l + t = 0,5 · 2,5 + 0,5 = 1,75 м.;

б) сопротивление одного заземлителя вычислим по формуле, (ρэкв = ρфакт):

прим. автора, где ln — логарифм, смотри ⇒ формулы на Рис. 4

Нормируемое сопротивления для нашего примера должно быть не больше 30 Ом., поэтому принимается равным R1 ≈ 28 Ом., что соответствует ПУЭ для одиночного вертикального заземлителя (электрода) заземления опоры ВЛ — U ∼ 380 В.

Если недостаточно одного заземлителя для опоры, то можно добавить второй или третий, в этом случае для двух заземлителей расчёт выполняется как для заземлителей в ряд, для трёх заземлителей (треугольником) по контуру, при этом надо иметь в виду, что расчёт треугольником малоэффективный, из-за взаимного влияния электродов друг к другу.

2. Пример расчёта заземления с расположением заземлителей в ряд:

Воспользуемся данными из примера 1 , где R = 27,58 Ом·м для расчёт вторичного заземления электроустановок (ЭУ), где нормативное сопротивление требуется не более Rн = 10 Ом, на вводе в здания, при напряжении 380 В и каждого повторного заземлителя не более Rн = 30 (см. ПУЭ п.1.7.103 см. Заземлители) .

Расчет:

а) для расчёта заземления с расположением в ряд заземлителей, как уже отмечалось выше, возьмем данные из примера 1, где R1 = 27,58 Ом·м одиночного заземлителя и Ψ — 1,45 для третей климатической зоне;

б) предварительное количество стержней вертикального заземления без учета сопротивления горизонтального заземления находится по формуле 4.3 (см. Расчёт заземления):

n = 27,58 / 10 = 3,54 шт, где коэффициент спроса (использования) примем η = 1; далее по таблице 3 выберем число электродов n = 3 в ряд при отношение расстояние между электродами к их длине a = 1хL и коэффициент спроса η = 0,78, далее уточняем число электродов:

n = 27,58 / (10 · 0,78) = 3,26 шт; где потребуется увеличить число электродов или изменить расстояние к их длине a = 3хL, для экономии материалов примем отношение a = 3хL и количество вертикальных электродов равным — n = 3 шт . с коэффициентом спроса η = 0,91: n = 27,58 / (10 · 0,91) = 3,03 шт; т.к. общее сопротивление заземлителя уменьшиться за счёт горизонтального заземлителя;

Читайте так же:
Бесплатные счетчики посещений для страница

в) длину самого горизонтального заземлителя найдем исходя из количества заземлителей расположенных в ряд, где а = 3· L = 3 · 2 = 6 м ; Lг = 6 · (3 — 1) = 12 м;

г) сопротивление растекания тока для горизонтального заземлителя находим по формуле 5 (см. Расчёт заземления), где в качестве верхнего грунта принято глина полутвердая с удельным сопротивлением 60 Ом·м., до глубины верхнего слоя нашей траншеи t = 0,5 м. см. пример 1; выберем полосу заземлителя 40 х 4 мм ., где коэффициент III климатической зоны для горизонтального (полосового) заземлителя возьмём Ψ — 2,2 и коэффициент спроса примем η = 1 , т.к. расстояние между электродами более 5 м., что исключает влияние около электродной зоны, по количеству принятых электродов, их длине и отношению расстояния между ними (см. таблицу 3 Расчёт заземления) :

ширина полки для полосы b = 0,04 м.

Rг = 0,366 · (100 · 2,2 / 12 · 1) · lg (2 · 12 2 /0,04 · 0,5) = 27,90 Ом·м, примем сопротивление горизонтального заземлителя — Rг = 27,9 Ом·м;

где, lg- десятичный логарифм ( смотри формулы формулы для расчёта рис. 4), b — 0,04 м. ширина полосы, t — 0,5 м. глубина траншеи.

д) Определим общее сопротивление вертикального заземлителя с учетом сопротивления растеканию тока горизонтальных заземлителей:

Rоб = (27,9 · 27,58) / (27,58 · 1) + (27,9 · 0,91 ·3) = 7,42 Ом·м

где Rоб общее сопротивление заземлителей; R В вертикального; RГ — горизонтального , ηВ и ηГ — коэффициенты использования вертикального и горизонтального заземлителя , n — шт количество вертикальных заземлителей.

Rоб = 7,42 Ом·м соответствует норме при напряжении U — 380 В для ввода в здание, где нормированное сопротивление не более Rн = 10 Ом (Общее сопротивление растеканию заземлителей (в том числе естественных) всех повторных заземлений PEN-проводника каждой ВЛ в любое время года должно быть не более 5, 10 и 20 Ом соответственно при линейных напряжениях 660, 380 и 220 В., ПУЭ п.1.7.103.)

3. Пример расчёта заземления с расположением заземлителей по контуру:

В качестве грунта примем сугли́нок — почва с преимущественным содержанием глины и значительным количеством песка с удельным сопротивлением ρ — 100 Ом·м. Вертикальный заземлитель из стальной трубы с наружным диаметром d — 32 мм., толщена стенки S — 4 мм., длиной электрода L — 2,2 м и расстоянием между ними 2,2 м ( a = 1хL). Заземлители расположены по контуру. Глубина траншеи равна t = 0,7 м. Из таблицы 6 возьмем повышающий коэффициент для второй климатической зоны и длине заземлителей до 5 м, его сезонное климатическое значение сопротивление составит Ψ1,5. Нормированное сопротивление заземляющего устройства равно Rн = 10 Ом·м . Фактическое удельное сопротивление почвы вычислим по формуле: ρ экв = Ψρ = 1.5 · 100 = 150 Ом·м.

а) вычислим сопротивление растекания тока одного вертикального заземлителя (стержня) по формуле 2 см. Расчёт заземления:

R О = 150 / (2π · 2,2) · ( ln (2 · 2,2 / 0,032) + 0,5 · ln (4 · 1,8 + 2,2) / (4 · 1,8 — 2,2)) = 10,85 · (ln 137,5 + 0,5 · ln 1,88) = 56,845 Ом·м., где T = 0,5 · L + t = 0,5 · 2,2 + 0,7 = 1,8 м. Примем RО = RВ = 56,85 Ом·м.,

б) предварительное количество стержней вертикального заземления без учета сопротивления горизонтального заземления находим по формуле (см. Расчёт заземления):

n = 56,85 /10 = 5,685 шт., округляем по таблице 3 до ближайшего значения, где n = 4 шт., далее по таблице 3 выберем число электродов n = 6 шт по контуру при отношение расстояние между электродами к их длине a = 1хL, где коэффициент спроса η = 0,62 и уточним количество
стержней с коэффициентом использования вертикальных заземлителей: n = 56,85 /10 · 0,62 = 9,17 шт., т.е требуется увеличить количество электродов до n = 10 шт., где коэффициент спроса η В = 0,55 ;

в) находим длину горизонтального заземлителя исходя из количества заземлителей расположенных по контуру: L Г = а · n , L Г = 2,2 · 10 = 22 м., где а = 1 · L = 1 · 2,2 = 2,2 м;

г) находим сопротивление растекания тока для горизонтального заземлителя по формуле 5 (см. Расчёт заземления), где коэффициент для II климатической зоны для горизонтального (полосового) заземлителя возьмём Ψ — 3,5 , коэффициент спроса примем по таблице 3 — η Г = 0,34 , ширина полосы горизонтального заземлителя b — 40 мм , (если из той же трубы d = 32 мм , то тогда ширина b полосы будет равна — b = 2 · d = 2 · 32 = 64 мм , b = 0,064 м .) и удельное сопротивление грунта — ρ = 100 Ом.м, по формуле 6:

Читайте так же:
Счетчики шагов как работают

R Г = 0,366 · (100 · 3,5 / 22 · 0,34) · lg (2 · 22 2 /0,040 · 0,7) = 17,126 · lg 34571,428 = 77,73 Ом·м, примем сопротивление горизонтального заземлителя — R Г = 77,73 Ом·м;

д) Определим полное сопротивление вертикального заземлителя с учетом сопротивления растекания тока горизонтальных заземлителей по формуле 6:

Rоб = (77,73 · 56,85) / (56,85 · 0,34) + (77,73 · 0,55 ·10) = 9,89 Ом·м , что соответствует заданной норме сопротивления не более Rн = 10 Ом·м.

Перейти далее: Продолжение примеров расчёта заземления

Данный расчет следует применять как оценочный. После ок ончания монтажа заземляющего устройства необходимо пригласить специалистов электролаборатории для проведения электроизмерений (для ООО и ИП обязательно).

Вернутся:

Перейти в раздел: Паспорт ЗУ, Акт освидетельствования скрытых работ, Протокол испытания ЗУ

Примечание: данный раздел пока находится в разработке, могут быть опечатки.

Метод узловых напряжений

Кроме метода контурных токов, для уменьшения трудоемкости расчётов, применяют метод узловых напряжений, при этом возможно еще меньшее число уравнений, так как при этом методе их число достигает

где q – количество узлов в электрической цепи.

Принцип расчёта электрической цепи заключается в следующем:

  1. Принимаем один из узлов цепи за базисный и присваиваем ему потенциал равный нулю;
  2. Для оставшихся узлов составляем уравнения по первому закону Кирхгофа, заменяя токи в ветвях по закону Ома через напряжение и сопротивление;
  3. После решения получившейся системы уравнений вычисляем токи в ветвях по обобщенному закону Ома.

В качестве примера возьмём предыдущую цепь и составим систему уравнений


Схема для решения уравнений методом узловых потенциалов.

В качестве базисного возьмём узел А и заземлим его, для остальных узлов B и D составим уравнения по первому закону Кирхгофа

Примем потенциалы узлов В = U1 и D = U2, тогда токи в ветвях выразятся через обобщённый закон Ома

В результате получившаяся система будет иметь следующий вид

Рассчитаем схему, изображённую на рисунке выше со следующими параметрами E1 = E3 = 100 B, E2 = 50 B, R1 = R2 = 10 Ом, R3 = R4 = R5 = 20 Ом. Запишем систему уравнений

В результате решения системы уравнений мы пришли к следующим результатам: потенциал в узле В – U1 = -57,14 В, а в узле D – U2 = 14,29 В. Теперь нетрудно посчитать, что токи в ветвях будут равны

Результат решения для токов I2 и I5 получился отрицательным, так как действительное направление токов противоположно направлению, изображённому на рисунке. Данные результаты совпадают с результатами, полученными для этой же схемы при расчёте по методу контурных токов.

Теория это хорошо, но без практического применения это просто слова.Здесь можно всё сделать своими руками.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector