Gazmarket59.ru

Газ Маркет 59
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Счетчик гейгера счетчик ионизирующего излучения

Принцип действия счетчика Гейгера и современные дозиметры

Счетчик Гейгера-Мюллера — простой и дешевый радиоактивный датчик. Это не точный инструмент, который фиксирует отдельные частицы. Техника измеряет общую насыщенность ионизирующего излучения. Физики используют его с другими датчиками, чтобы добиться точности расчетов при проведении экспериментов.

Описание

Если вы хотели найти на AliExpress самый дешевый geigecounter, то мы уже нашли его.
Всего за $2 можно приобрести механический ручной счётчик Гейгера (детектор ядерного излучения).

Из описания по ссылке можно узнать, что регистрация события происходит нажатием большим пальцем руки на металлический рычажок. Всё зависит исключительно от ловкости рук.
Можно регистрировать до 300 событий в минуту.
Оригинальная ссылка: https://ru.aliexpress.com/item/1-Piece-Digital-Chrome-Hand-Tally-Clicker-Counter-4-Digit-Number-Clicker-Golf-Digital-Chrome-Hand/32694971580.html?spm=2114.10010208.1000016.1.GMv1HU
Мы не могли пройти мимо такого чудесного прибора.

На этой странице вы познакомитесь с другими интересными находками,
которые можно встретить на просторах интернета,
и узнаете где их можно купить по самой низкой цене

1. Дозиметр радиации Smart Geiger Stick FSG-001 FTLab: http://www.espada-tech.ru/pr_-40834.shtml
ESPADA компания-разработчик, специализирующаяся на проектировании и разработке компьютерных комплектующих и электротехнической продукции. Заказы на производство своей продукции ESPADA размещает на лучших фабриках.
В данном разделе рассмотрим серию приборов FTLab. Все они соединяются со смартфоном через разъём джек и отличаются друг от друга назначением и цветом корпуса.
1.1. Чёрный корпус. Детектор радиации. 2208руб. Smart Geiger — это одно из более шести устройств, которые удалось разыскать из серии FTLab.
В качестве детектора ионизирующего излучения в этом устройстве используется полупроводниковый диод. Это очень чувствительный детектор. На столько чувствительный, что на легкие пощёлкивания по корпусу ногтем детектор реагирует едва ли хуже, чем на ионизирующее излучение.
Отзывы покупателей мы не нашли, но говорят, что на ютубе есть видео сравнения этого прибора с другими дозиметрами.
Мы нашли на AliExpress это устройство ещё дешевле за 1640руб и с описанием. См. ниже пункт 1.8.
Конечно и у этого детектора найдётся свой покупатель. Например, если нужно определять, есть ли на циферблате часов или приборов светомасса постоянного действия.

Вот так выглядит детектор:

1.2. Голубоватый корпус. Детектор температуры и влажности FTLAb FTC-001 Smart-Temp Cheker.
В качестве датчика температуры и влажности тоже используется полупроводник. Возможно, диод.

1.3. Пурпурный корпус. Детектор электро-магнитного излучения FEC-001 EM Cheker.
Тип датчика тоже полупроводниковый.

1.4. Голубой цвет. Детектор ультрафиолетового излучения для смартфона.
Описание модели не нашли. Тип датчика, скорее всего, полупроводниковый.

1.5. Фиолетовый цвет. Детектор радиометр инфракрасного излучения FTLab FIR-001 IR-Cheker.
Тип датчика полупроводниковый.

1.6. Тоже черный цвет. Вольтметр.

1.7. Неопределенный цвет. Детектор освещенности Smart VL Cheker FVL-001.
Датчик, скорее всего, полупроводниковый.
На этом сайте и другие позиции подешевле. Ищите по слову Checker.

1.8. Смарт-гейгер на AliExpress

2. Ручка-дозиметр. Ещё один китайский «счетчик гейгера» на AliExpress.

Принцип работы [ | ]

Цилиндрический счётчик Гейгера — Мюллера состоит из металлической трубки или металлизированной изнутри стеклянной трубки и тонкой металлической нити, натянутой по оси цилиндра. Нить служит анодом, трубка — катодом. Трубка заполняется разреженным газом, в большинстве случаев используют благородные газы — аргон и неон. Между катодом и анодом создаётся напряжение от сотен до тысяч вольт в зависимости от геометрических размеров, материала электродов и газовой среды внутри счётчика. В большинстве случаев широко распространённые отечественные счётчики Гейгера, требуют напряжения 400 В .

Работа счётчика основана на ударной ионизации. Гамма-кванты, испускаемые радиоактивным изотопом, попадая на стенки счётчика, выбивают из него электроны. Электроны, двигаясь в газе и сталкиваясь с атомами газа, выбивают из атомов электроны и создают положительные ионы и свободные электроны. Электрическое поле между катодом и анодом ускоряет электроны до энергий, при которых начинается ударная ионизация. Возникает лавина ионов, приводящая к размножению первичных носителей. При достаточно большой напряжённости поля энергии этих ионов становится достаточной, чтобы порождать вторичные лавины, способные поддерживать самостоятельный разряд, в результате чего ток через счётчик резко возрастает. Этим счётчик Гейгера отличается от пропорционального счётчика, где напряжённость поля недостаточна для возникновения вторичных лавин, и разряд прекращается после пролёта первичной лавины. При этом на сопротивлении R образуется импульс напряжения, который подаётся в регистрирующее устройство. Чтобы счётчик смог регистрировать следующую попавшую в него частицу, лавинный разряд нужно погасить. Это происходит автоматически. В момент появления импульса тока на сопротивлении R возникает большое падение напряжения, поэтому напряжение между анодом и катодом резко уменьшается — настолько, что разряд прекращается, и счётчик снова готов к работе. Для ускорения гашения могут использоваться специальные схемы, принудительно снижающие напряжение на счётчике, что позволяет также уменьшить анодное сопротивление и увеличить уровень сигнала. Однако чаще в газовую смесь в счётчике добавляют немного галогена (брома или иода) или органического соединения с относительно большой молекулярной массой (обычно какого-либо спирта) — эти молекулы взаимодействуют с положительными ионами, давая в результате ионы с большей массой и меньшей подвижностью. Кроме того, они интенсивно поглощают ультрафиолетовое излучение разряда — эти два фактора приводят к быстрому и самопроизвольному гашению разряда даже с небольшим анодным сопротивлением. Такие счётчики называются самогасящимися. В случае применения в качестве гасящей добавки спирта при каждом импульсе некоторое его количество разрушается, поэтому гасящая добавка расходуется и счётчик имеет определённый (хоть и достаточно большой) ресурс по количеству зарегистрированных частиц. При его исчерпании счётчик начинает «гореть» — начинает самопроизвольно возрастать скорость счёта даже в отсутствии облучения, а затем в счётчике возникает непрерывный разряд. В галогенных счётчиках распавшиеся молекулы галогена вновь соединяются, поэтому их ресурс значительно больше ( 10 10 импульсов и выше).

Читайте так же:
Подключение счетчиков меркурий через оптопорт

Счётная характеристика (зависимость скорости счёта от напряжения на счётчике) имеет хорошо выраженное плато, в пределах которого скорость счёта очень слабо зависит от напряжения на счётчике. Протяжённость такого плато достигает для низковольтных счётчиков 80—100 В , а для высоковольтных — нескольких сотен вольт.

Длительность сигнала со счётчика Гейгера сравнительно велика ( ≈10 −4 с ). Именно такое время требуется, чтобы медленные положительные ионы, заполнившие пространство вблизи нити-анода после пролёта частицы и прохождения электронной лавины, ушли к катоду и восстановилась чувствительность детектора.

Важной характеристикой счётчика является его эффективность. Не все γ -фотоны, попавшие на счётчик, дадут вторичные электроны и будут зарегистрированы, так как акты взаимодействия γ -лучей с веществом сравнительно редки, и часть вторичных электронов поглощается в стенках прибора, не достигнув газового объёма.

Эффективность регистрации частиц счётчиком Гейгера различна в зависимости от их природы. Заряженные частицы (например, альфа- и бета-лучи) вызывают разряд в счётчике почти всегда, однако часть их теряется в материале стенок счётчика. Особенно это актуально для альфа-частиц и мягкого бета-излучения. Для их регистрации в счётчике делают тонкое ( 2—7 мкм для регистрации альфа-излучения и 10—15 мкм для мягкого бета-излучения) окно из слюды, алюминиевой или бериллиевой фольги или полимерной плёнки. Эффективность счётчика для рентгеновского и гамма-излучения зависит от толщины стенок счётчика, их материала и энергии излучения. Так как γ -излучение слабо взаимодействует с веществом, то обычно эффективность γ -счётчиков мала и составляет всего 1—2 % . Наибольшей эффективностью обладают счётчики, стенки которых сделаны из материала с большим атомным номером Z , так как при этом увеличивается образование вторичных электронов. Кроме того, стенки счётчика должны быть достаточно толстыми. Толщина стенки счётчика выбирается из условия её равенства длине свободного пробега вторичных электронов в материале стенки. При большой толщине стенки вторичные электроны не пройдут в рабочий объём счётчика, и возникновения импульса тока не произойдёт. Это приводит к характерной зависимости скорости счёта от энергии гамма-кванта (так называемый «ход с жёсткостью») с явно выраженным максимумом, который у большинства счётчиков Гейгера расположен в области мягкого гамма-излучения. При использовании счётчиков Гейгера в дозиметрической аппаратуре «ход с жёсткостью» частично исправляют с помощью дополнительного экрана (например, стального или свинцового), который поглощает мягкое гамма-излучение вблизи максимума чувствительности и вместе с тем несколько повышает эффективность регистрации жёстких гамма-квантов из-за генерации вторичных электронов и комптоновского излучения в материале экрана. В результате этого зависимость скорости счёта от мощности дозы в значительной степени выравнивается. Этот экран часто делают съёмным для возможности раздельного определения бета- и гамма-излучения. Напротив, для регистрации рентгеновского излучения применяют счётчики с тонким окном, наподобие используемого в детекторах для альфа- и мягкого бета-излучения.

Нейтроны напрямую газоразрядными счётчиками не детектируются. Использование в качестве газовой среды гелия-3 или трифторида бора либо введение бора в состав материала стенок позволяет регистрировать нейтроны по заряженным продуктам ядерных реакций.

Помимо низкой и сильно зависящей от энергии эффективности, недостатком счётчика Гейгера — Мюллера является то, что он не даёт возможность идентифицировать частицы и определять их энергию. Эти недостатки отсутствуют в сцинтилляционных счётчиках.

При измерении слабых потоков ионизирующего излучения счётчиком Гейгера необходимо учитывать его собственный фон. Даже в толстой свинцовой защите скорость счёта никогда не становится равной нулю. Одной из причин этой спонтанной активности счётчика является жёсткая компонента космического излучения, проникающая без существенного ослабления даже через десятки сантиметров свинца и состоящая в основном из мюонов. Через каждый квадратный сантиметр у поверхности Земли пролетает в среднем около 1 мюона в минуту, при этом эффективность регистрации их счётчиком Гейгера практически равна 100 %. Другой источник фона — это радиоактивное «загрязнение» материалов самого счётчика. Кроме того, значительный вклад в собственный фон даёт спонтанная эмиссия электронов из катода счётчика.

Счетчик радиации бытовой. Как правильно выбрать дозиметр радиации

ПРИБОРЫ, ИЗМЕРЯЮЩИЕ РАДИОАКТИВНОСТЬ (от латинского radio — испускаю луч и activus — активно) — это приборы, предназначенные для измерения дозы излучения или величин, связанных с ней.
Радиоактивные и рентгеновские излучения при воздействии на органы чувств человека не видны, но они могут быть обнаружены с помощью специализированных приборов и приспособлений, основанных на физикохимических процессах.
Воздействие радиации на человека называют облучением. Основу этого воздействия составляет передача энергии радиации клеткам организма.
Облучение может вызвать нарушения обмена веществ, инфекционные осложнения, лейкоз и злокачественные опухоли, лучевое бесплодие, лучевую катаракту, лучевой ожог, лучевую болезнь.
Все приборы для измерения ионизирующих и радиоактивных излучений подразделяются на три категории: радиометрические (радиометры), дозиметрические (дозиметры), блоки и устройства электронной аппаратуры для ядерно-физических исследований (ионизационные камеры, пропорциональные счетчики и счетчики Гейгера-Мюллера, коронные и искровые счетчики).
Радиометр — это прибор, который способен измерить активность источников излучения и определить плотность потока ионизирующих частиц света. Он состоит из стеклянного сосуда, содержащего алюминиевую вертушку с горизонтальными ветвями и с газоразрядным счетчиком. Измерители радиоактивности (радиометры) делятся на радиометры загрязнения поверхностей и радиометры загрязнения воздуха.
Радиометр был изобретен в 1873 г. английским ученым В. Круксом, который доказал, что он может служить измерительным прибором для разных проявлений излучений.
Дозиметр (или рентгенометр) — это прибор, который измеряет дозы излучения и мощность доз. Он состоит из трех основных частей: детектора, радиотехнической схемы, регистрирующего (измерительного) устройства.
Дозиметры делятся на стационарные, переносные и индивидуального дозиметрического контроля.
Необходимо учитывать, что при любых измерениях радиации присутствует естественный радиационный фон. Поэтому сначала выполняют измерение дозиметром уровня фона, характерного для данного участка местности (на достаточном удалении от предполагаемого источника радиации), после чего выполняют измерения уже в присутствии предполагаемого источника радиации. Наличие устойчивого превышения над уровнем фона может свидетельствовать об обнаружении радиоактивности.
В том, что показания дозиметра в квартире больше в 1,5 — 2 раза, чем на улице, нет ничего необычного.
Ионизационная камера — это прибор, с помощью которого измеряются все типы излучений (радиационное, химическое и др.). Она может быть плоской, цилиндрической и сферической формы.
Ионизационные камеры в зависимости от назначения и конструкции могут работать как в импульсном, так и токовом режиме.
Пропорциональные счетчики позволяют определять энергию ядерных частиц и изучать природу их существования. Они наполняются газовой смесью неона с аргоном и работают при атмосферном давлении.
Счетчик Гейгера-Мюллера представляет собой газоразрядный прибор, который способен обнаружить и исследовать различного рода ионизирующие излучения, такие как альфа- и бета-частицы, гамма-кванты, световые и рентгеновские кванты, частицы высокой энергии в космических лучах и на ускорителях. Счетчик Гейгера-Мюллера был создан в 1908 г. учеными Г. Гейгером и И. Мюллером и основан на ударной ионизации, то есть на внезапном действии атомов или молекул с электрическим зарядом в вакууме, наполненным инертным газом.
Широкое применение счетчик Гейгера-Мюллера получил в ядерной технике и при поиске радиоактивных урановых и ториевых руд.
Позже, в 1912 г., английский ученый Ч. Вильсон разработал лабораторное устройство, с помощью которого возможно было как наблюдать, так и фиксировать движения радиоактивных заряженных частиц с небольшой скоростью. Оно было названо камерой Вильсона.
В 1932 г. советский физик П. Капица и американский ученый К. Андерсон на основе наблюдений за камерой Вильсона сконструировали более усовершенствованный прибор, внутри которого помещался крупный электромагнит со стальным сердечником, дававший возможность более точно определять энергию радиоактивных частиц.
В 1959 г. Ч. Вильсон также изобрел камеру для фиксации следов пролета заряженных радиоактивных частиц под названием «магнитный спектрограф».
Все приборы, измеряющие радиоактивность, позволяют вовремя предупредить людей о превышении уровня радиации и, возможно, предотвратить катастрофу. К таким приборам з настоящее время относятся: дозиметры и дозиметры-радиометры МС-04Б «Эксперт»), DG-101, «Белла», ДБГ-01Н; ионизационные камеры, например, САТ-7 и САТ-8; пропорциональный счетчик СИ-ЗБ и др.
Куда обратиться, в случае обнаружения высокого уровня радиации?
В Москве для этого можно воспользоваться следующими номерами телефонов:
Служба радиационной безопасности МосНПО «Радон» 379-78-31;
Центр Государственного санитарно-эпидемиологического надзора в г.Москве, Отдел радиологии 287-78-34;
Оперативный дежурный Главного управления по делам гражданской обороны и чрезвычайным ситуациям города Москвы 925-34-27, 229-20-20.

Читайте так же:
WordPress счетчик для социальных кнопок

В настоящее время дозиметры являются популярными приборами, их продажи растут, на рынок приходят новые модели, запросы «куплю дозиметр» занимают лидирующие позиции в сетевых поисковых системах. В настоящем обзоре мы рассмотрим некоторые аспекты, связанные с этим классом оборудования.

Дозиметры радиации — немного истории

Первым прибором, обеспечивающим количественную оценку интенсивности излучения и накопленной дозы, был счетчик, сконструированный Гейгером в 1908 году. Счетчик Гейгера (счетчик Гейгера-Мюллера) или газоразрядный детектор, стал основой широкого класса приборов — дозиметров-детекторов радиоактивного излучения. Первоначально этот прибор имел исключительно лабораторное применение и изначально изготавливался самостоятельно экспериментаторами и мысль «куплю счетчик Гейгера» просто не могла прийти в голову. Впоследствии эти приборы стали изготавливаться производителями оборудования, и появилась возможность выбрать оптимальную модель счетчика Гейгера, купить ее и использовать в своих исследованиях.

Необходимость измерения интенсивности и дозы радиоактивного излучения обусловлена его негативным воздействием на организм человека. Первыми с проблемой лучевой болезни, вызванной полученной дозой радиации, столкнулись физики-экспериментаторы. Помимо прямого воздействия, вызывающего гибель клеток, такое облучение приводит к отложенным негативным последствиям — раковым заболеваниям и мутациям потомства. Именно поэтому возникла необходимость разработки надежных и простых приборов – дозиметров и радиометров — то есть устройств, показывающих, соответственно, полученную дозу облучения и его интенсивность.

Принцип действия классического счетчика Гейгера заключается в том, что при появлении ионизирующего излучения происходит пробой находящегося под напряжением конденсатора. Чем выше интенсивность излучения — тем выше частота пробоев. В первых моделях дозиметра – счетчика Гейгера конденсатор был выведен на динамик, и интенсивность излучения определялась по частоте «щелчков». Последующие модификации позволили точно определять мощность излучения и накопленную дозу.

Дозиметры радиации — принцип действия и функционал

Условно все типы дозиметров можно поделить на две группы:

Читайте так же:
Счетчик времени для подписи

Недорогие индивидуальные дозиметры, которые измеряют мощность дозы ионизирующего излучения на бытовом уровне — для проверки продуктов питания, строительных материалов и т.д.

Дозиметры этой категории помимо измерения дозы излучения могут измерять активность радионуклида в каком либо образце: предмете, жидкости, газе и т.д. Дозиметры-радиометры могут измерять плотность потока ионизирующих излучений для проверки на радиоактивность различных предметов или оценки радиационной обстановки на местности.

Еще одна сфера применения дозиметров-радиометров — банки. Для всех банков существует предписание, согласно Инструкции ЦБ РФ № 131-И от 4 декабря 2007 г. «О порядке выявления, временного хранения, гашения и уничтожения денежных знаков с радиоактивным загрязнением» — банки обязаны проверять денежную массу, проходящую через их филиалы с помощью дозиметров-радиометров. После проверки и выявления зараженных банкнот их утилизируют, предотвращая хождение радиоактивных денег.

При выборе и покупке дозиметра радиации необходимо учитывать, что качество и надежность этого прибора являются ключевыми факторами. Всегда помните, что выбор дозиметра — это прежде всего выбор собственных здоровья и безопасности, и, прежде чем купить дозиметр радиации, проведите анализ рынка и технические характеристики моделей. Помните, что важным критерием выбора является репутация производителя.

В настоящее время, среди огромного предложения дозиметров/радиометров, следует отметить несколько надежных брендов:

  • . Приборы серии «Радэкс» выпускается ООО «Кварта Рад» — предприятием, специализирующемся на разработке и производстве приборов контроля излучений, включая системы радиационного контроля. Высокая эффективность, надежность и впечатляющие технические характеристики выводят дозиметры под брендом «Радэкс» в число лидеров рынка. Лучшие модели: и .
  • — профессиональные дозиметры-радиометры, пользующиеся большим успехом как у специалистов, так и у населения. Особенной популярностью пользуется дозиметр — лауреат российских и международных конкурсов.
  • . Серия дозиметров, которая выпускается предприятием «Доза» и пользуется заслуженной популярностью на российском рынке. Настоящий хиты — дозиметр — подтвержденная надежность и удобство использования обеспечивают этому прибору заслуженную популярность, а также «упрощенный» вариант этого прибора — .
  • . Универсальные и высокоэффективные приборы российского производства. Один из хитов этого семейства дозиметров — — используется структурами Министерства Обороны и Министерства по Чрезвычайным Ситуациям Российской Федерации.

Дозиметры радиации — немного теории

К ионизирующему относятся следующие виды излучения:

  • Гамма-излучение
  • Рентгеновское излучение
  • Альфа-излучение — потоки частиц – ядер атомов гелия-4
  • Бета-излучение — потоки частиц – электронов и позитронов
  • Потоки нейтронов
  • Потоки заряженных частиц – ионов

Дозиметры бытовые в режиме радиометра измеряют мощность ионизирующего излучения, выражаемого в микрорентгенах в час (микрозивертах в час). Как правило, диапазон измерения лежит в пределах 10-10000 микрорентген в час (0,1-100 микрозивертов в час). Безопасным считается уровень облучения до 50 микрорентген в час (0,5 микрозивертов в час). Безопасной накопленной дозой считается 0,4 рентгена в год (4 миллизиверта в год).

Необходимо также учитывать, что различные виды излучения по-разному воздействуют на организм человека. В таблице приведены коэффициенты биологической эффективности (КБЭ) различных видов ионизирующего излучения.

Эквивалентная доза рассчитывается путем умножения измеренной поглощенной дозы на соответствующий КБЭ:

Возможность применения дозиметров со счетчиком Гейгера-Мюллера для дозиметрии импульсного излучения

  • Аннотация
  • Об авторе
  • Список литературы
  • Cited By

Аннотация

В настоящее время широкое распространение в Российской Федерации получили медицинские установки для лучевой терапии на основе ускорителей электронов с энергией 18—23 МэВ. Они генерируют импульсное тормозное излучение с максимальной энергией около 20 МэВ. В Государственном реестре средств измерений в настоящее время отсутствуют дозиметрические приборы, предназначенные для дозиметрии импульсного тормозного излучения такой энергии. Наиболее широко используемый для этой цели дозиметр рентгеновского и гамма-излучения ДКС-АТ1123 позволяет проводить измерение импульсного тормозного излучения с энергией только до 10 МэВ, с основной погрешностью измерений в области энергий от 3 до 10 МэВ — 50%. Но альтернативы в настоящее время нет. И хотя вклад в дозу этой части спектра тормозного излучения не слишком велик, данную ситуацию нельзя признать нормальной. В то же время в Государственном реестре средств измерений имеется дозиметр ДКГ-РМ1621, предназначенный для дозиметрии рентгеновского и гамма-излучения в диапазоне энергий от 15 кэВ до 20 МэВ. Но он не предназначен для дозиметрии импульсных излучений. В настоящей работе предпринята попытка обосновать возможность использования данного дозиметра для дозиметрии импульсного тормозного излучения и определить диапазон мощностей доз, в котором результаты измерений данным дозиметром корректны. В качестве источника импульсного тормозного излучения для проведения этого исследования использовался инспекционно-досмотровый комплекс СТ-2630Мпроизводства ООО «Скантроник Системе», генерирующий импульсное тормозное излучение с максимальной энергией 3,5 МэВ и 6 МэВ. В этой области энергий дозиметр ДКС-АТ1123 позволяет получать корректные результаты измерения, и он использовался в качестве реперного прибора. Полученные результаты показали, что для данного источника дозиметр ДКГ-РМ1621 позволяет получать результаты с дополнительной погрешностью не более 15% при средней мощности дозы тормозного излучения до 25мкЗв/ч, что в большинстве случаев вполне достаточно для проведения радиационного контроля помещений, смежных с процедурной медицинского ускорителя электронов. При использовании поправочных коэффициентов, учитывающих влияние мертвого времени дозиметра на результаты измерений, область получения корректных результатов может быть расширена до 100 мкЗв/ч.

Читайте так же:
Как получить счетчик liveinternet

Ключевые слова

Об авторе

Титов Николай Владимирович – младший научный сотрудник лаборатории внешнего облучения.

197101, Санкт-Петербург, ул. Мира, д. 8

Список литературы

1. ICRU Report 34, The Dosimetry of pulsed radiation, 1982.

2. Мартынюк, Ю.Н. Дозиметрия импульсного излучения / Ю.Н. Мартынюк, К. Нурлыбаев, А.А. Ревков // аНрИ. -2018. — № 1 (92). — С. 2-11.

3. Response of Active Electronic Radiation Monitors in Pulsed X-ray Beams from Linacs. (Peter D Harty, Genesan Ramanathan. Australian Radiation Protection & Nuclear Safety Agency 619 Lower Plenty Road, Yallambie, Victoria 3085)

4. Дозиметры рентгеновского и гамма излучения ДКС-АТ1121, ДКС-АТ1123. Руководство по эксплуатации.

5. ДКГ-РМ1621. Руководство по эксплуатации.

Для цитирования:

Титов Н.В. Возможность применения дозиметров со счетчиком Гейгера-Мюллера для дозиметрии импульсного излучения. Радиационная гигиена. 2019;12(2):76-80. https://doi.org/10.21514/1998-426X-2019-12-2-76-80

For citation:

Titov N.V. Prospects for the use of the dosimeters with Geiger-Muller counters for the dosimetry of the pulse emission. Radiatsionnaya Gygiena = Radiation Hygiene. 2019;12(2):76-80. (In Russ.) https://doi.org/10.21514/1998-426X-2019-12-2-76-80


Контент доступен под лицензией Creative Commons Attribution 4.0 License.

Как работает счетчик

Радиация не имеет опознавательных признаков (вкуса, цвета, запаха), без специальной аппаратуры невидимку не распознать. Идея счетчика радиоактивных частиц принадлежит немецким физикам Гейгеру и Мюллеру. Гейгер придумал, Мюллер воплотил идею в жизнь. Схема претерпела мало изменений за 90 лет, прошедших с выпуска первых приборов, настолько она проста и технически совершенна, на ее основе работает большинство современных дозиметров.

Рассмотрим принцип работы классического счетчика Гейгера на примере датчика СМБ-20. Детище компании Росатом представляет собой герметичный баллончик с проволочным анодом внутри. Анод (с зарядом плюс) и стальной корпус прибора (отрицательный катод), наполненный инертным газом, образуют конденсатор.

Ионизирующие частицы, ударяясь о стенки корпуса, выбивают из металла электроны. Прорываясь к аноду сквозь газовую среду, электроны сталкиваются с молекулами газа и пополняют компанию новыми частицами. Напряжение в несколько сотен вольт между полюсами ускоряет процесс, превращает электронный поток в лавину. Газовое наполнение становится проводником. Сила тока резко возрастает. Регистрирующее устройство фиксирует скачок. Одновременно импульс вызывает падение напряжения на встроенном резисторе (высокоомное сопротивление), разность потенциалов между анодом и катодом уменьшается, разряд гасится, и счетчик готов ловить следующую частицу.

Цилиндрический СМБ-20 фиксирует гамма и жесткое бета-излучение, вызванное энергетически активными частицами с высокой проникающей способностью. Для обнаружения мягкого бета-излучения используют плоские счетчики (БЕТА -2) круглые или прямоугольной формы со слюдяным окошком, пропускающим частицы, не способные пробить металлический корпус. Здесь используется тот же принцип работы.

Альфа-частицы плохо распознаются приборами, поскольку активно взаимодействуют с окружающей средой и моментально теряют энергию. Обычный счетчик ловит α-излучение только на расстоянии нескольких сантиметров от источника.

Дозиметр радиации. Виды и применение. Как выбрать и пользоваться

Дозиметр радиации — это инструмент для измерения радиоактивного излучения. Он позволяет замерять радиационный фон в помещениях, а также общее количество радиоактивных веществ в любых окружающих предметах. Их использование обязательно на потенциально опасных производствах: на атомных станциях, на оружейных заводах и фабриках по производству медтехники.

В быту этот прибор тоже может быть очень полезным. Ведь уровень радиации очень сильно влияет на здоровье человека. Она имеет свойство накапливаться в организме и способна вызывать различные болезни, в том числе онкологические. Безопасным принято считать радиационный фон до 50 микрорентген в час.

Бытового дозиметра вполне достаточно, чтобы определить уровень радиоактивного заражения. И если датчик показывает, что допустимая норма превышена, лучше покинуть место нахождения или устранить из своего окружения предмет-источник заражения.

Конструкция дозиметра радиации и принцип работы

Главной рабочей деталью аппарата является датчик радиации. Именно от него зависит, как быстро можно получить данные и насколько они будут точны. Под действием альфа-, бета- и гамма-излучения в датчике происходят скачки напряжения, которые преобразуются в числовые данные.

Датчики отличаются друг от друга чувствительностью и бывают:
  • Слюдяные счетчики Гейгера-Мюллера. Их устанавливают в бытовые дозиметры. Фиксируют альфа- и бета- частицы.
  • Газоразрядные. Используются для небольших, карманных приборов. Регистрируют бета- и гамма-излучение и показывают только критический уровень.
  • Термолюминесцентные лампы встречаются в дозиметрах для индивидуального пользования. Замеряют накопленную дозу радиации.
  • Сцинтилляционные кристаллы. Фиксируют фотоны и их чувствительность максимальна. Однако бесполезны для измерения альфа-излучения.
  • Пин-диоды — наименее чувствительные датчики, которые фиксируют только критические уровни. Как правило, устанавливаются в телефонные штекеры.
Читайте так же:
Счетчики кто должен установить если не собственник

Другим составным элементом дозиметра выступает система оповещения. В бюджетных бытовых устройствах она представляет собой светодиоды и звук. Чем выше радиационный фон, тем интенсивнее мерцание и характерное потрескивание прибора. Более новые дозиметры, а также профессиональные модификации оснащены преобразователем данных и экраном для их отображения.

Дозиметр радиации может иметь и дополнительные функции, например, выносной детектор, настройку режимов измерения и подключение к ПК или планшету для анализа данных. Наиболее подходящая модель подбирается с учетом требований потребителя и условий применения.

Классификация приборов
По своему назначению дозиметры подразделяются на:
  • Бытовые. Реагируют только на гамма-излучения, имеют высокую степень погрешности и применяются для замера радиационного фона в помещении, а также излучение от продуктов питания и иных предметов.
  • Профессиональные. Фиксируют альфа-частицы, протоны и нейтроны. Измеряют уровень и дозу излучения в помещениях и на местности, от живых объектов, предметов, газов и жидких веществ. Такие модели обязательно регистрируются в реестре Росстандарта.
  • Промышленные. Предназначены для постоянного контроля за уровнем радиации. Устанавливаются на АЭС, горно-обогатительных предприятиях и т.п.
  • Военные. Предназначены для использования в военное время.
Среди бытовых устройств выделяют персональные, карманные и портативные.

Персональные по размеру напоминают обычный брелок. Могут регистрировать бета-, гамма-частицы, поток нейтронов и фотонов. Реагируют на превышение допустимого порога звуком или вибрацией. Некоторые приборы обладают световым сигналом. Дисплей у такого устройства отсутствует, и числовые данные можно получить только при подключении к компьютеру. Предназначены они для информирования своего хозяина о его нахождении в потенциально опасной зоне.

Карманный дозиметр радиации позволяет не только выявлять повышение допустимого фона бета- и гамма-излучения, но и запечатлевать полученные данные. Они имеют небольшие размеры, питаются от аккумулятора или батареек, имеют экран и несложное меню.

Есть и более оснащенные варианты, которые подключаются к телефону и/или планшету и имеют больший функционал.

Портативные совмещают в себе дозиметр и радиометр. В их функции входит еще и поиск зараженного предмета или объекта. Реагируют на гамма-излучение, используют разные виды оповещения (свет, звук), отображают данные на дисплее и имеют возможность подключения к ПК для анализа данных.

Как выбрать дозиметр радиации

Для того, чтобы определиться с моделью устройства, нужно прежде всего разобраться в том, для каких целей оно будет применяться. Установить, что окружающий радиационный фон превышает допустимые значения, в состоянии любой прибор. Если требуется только получать подобную информацию, подойдет обычный сигнализатор.

Для получения подробных данных об излучении требуются более чувствительные измерители, например МКС-03СА. Для обнаружения источника заражения применяются устройства поиска — они определяют направление к объекту излучения по колебаниям фона.

Если наряду с источником нужно установить тип изотопа, потребуются спектрометры, к примеру, лазерный дозиметр ЛД-07.

При выборе прибора для применения в домашних условиях, следует обращать внимание и на другие характеристики:
  • Верхний порог измерений. Желательно, чтобы он был не ниже 10 000 мкР/ч.
  • Типы датчиков и их количество в устройстве. Лучше, если в дозиметре несколько датчиков, позволяющих замерять разные виды излучений.
  • Производитель и наличие сертификата качества.
  • Размеры — бытовой дозиметр радиации должен быть компактным, помещаться в ладони и кармане.
  • Особенности работы. Желательно, чтобы питание прибора осуществлялось при помощи батареек, а экран был монохромным.
  • Система оповещения — звуковой, световой сигнал или отображение на дисплее.
  • Существование дополнительного функционала в зависимости от требований пользователя.
  • Возможность и тип подсоединения к гаджетам и ПК.

Дозиметр радиации с пин-диодами в практическом применении показал себя просто бесполезным, поэтому от него лучше отказаться.

Как правило, эксплуатация бытовых дозиметров не вызывает затруднений у пользователя. К тому же, к ним прилагается подробная инструкция. Проверить исправность тоже довольно просто — достаточно посмотреть на показания.

Интересные факты о радиации
О вреде радиации известно всем. Но есть и более интересные факты, позволяющие узнать о ней что-то новое:

  • Радиационный фон атомной подводной лодки меньше, чем наших обычных квартир.
  • Некоторые растения, например банан, являются источником излучения. Но его доза настолько мизерна, что лучевой болезни не случится, даже если есть одни бананы.
  • Изотопы имеются и в табаке, поэтому курящие люди получают вместе с дымом дозу облучения, равную 300-м рентгеновским процедурам.
  • Вследствие изменений в техносфере наши тела намного радиоактивнее, чем тела наших предков, населяющих Землю 200 лет назад.
  • Летчики и стюардессы подвержены облучению больше, чем работники атомных станций, ведь на большой высоте атмосфера Земли уже не так эффективно отражает рентгеновские волны.
  • Производственные отходы с высоким содержанием мышьяка более вредны для человека, чем радиоактивные.
  • Каждый день мы сталкиваемся с разными видами излучений, большинство из которых никак нам не вредит. Опасно лишь ионизирующее излучение в высоких дозах.
голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector