Gazmarket59.ru

Газ Маркет 59
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Счетчик радиации все виды

Современный рынок предлагает много моделей приборов, измеряющих уровень радиации. Условно они делятся на три больших класса:

  • радиометры, контролирующие степень активности излучающего источника и определения плотности потока α- и β-излучения на поверхности, подвергающиеся воздействию радиации;
  • дозиметры, измеряющие величину энергии, передаваемой объекту посредством излучения;
  • спектрометры, анализирующие спектр излучения частиц или квантов ионизирующего излучения по определенному показателю.

Каждый класс в свою очередь разделяется на группы по виду воспринимаемого излучения: α-, β-, γ-, рентгеновского, нейтронного или их комбинаций. Однако при едином принципе действия и наборе базовых возможностей приборы, измеряющие уровень радиации, по назначению делятся на два вида:

  • бытовые – недорогие и компактные, предназначенные для информирования человека, склонного к радиофобии, о превышении допустимого уровня радиоактивного излучения в конкретном месте, что позволяет ему быстро покинуть зараженный участок. Однако бытовые приборы, оценивая уровень заражения окружающей местности, не способны замерить дозу радиации, уже накопленной человеком;
  • профессиональные приборы крупнее и дороже бытовых, но обладающие при этом высокой чувствительностью, широким диапазоном и точностью измерений, что позволяет с большей достоверностью определить реальную опасность. Они используются для мониторинга состояния окружающей среды и контроля за передвижением радиоактивных веществ, а также способны определить дозу радиоактивного излучения, полученную человеком за все время. Профессиональные приборы бывают портативными – весом до 1,5 кг и лабораторными, предназначенными для использования в лабораторных и полевых условиях весом до 10 кг.

При неразрушающем контроле материалов, изделий, конструкций радиографическими методами для контроля радиационной обстановки чаще всего используются портативные профессиональные дозиметры, радиометры и комбинированные радиометры-дозиметры.

Как работает прибор?

Чем измеряют радиацию? Самым используемым прибором остаётся механизм с названием «счётчик Гейгера». Устройство изобрели более ста лет назад, однако оно так и остаётся популярным. Основная деталь счётчика — металлический, либо стеклянный баллон, заполненный газами — аргоном и неоном. Внутри находятся два электрода.

При попадании внутрь прибора радиоактивных частиц происходит ионизация атомов газа. Реакция проявляется в виде свечения. Процесс полностью контролируется устройством. При обнаружении радиации прибор издает щелчки, ионизация атомов погашается искусственным способом. Это необходимо для получения точной информации.

Для обнаружения вредных излучений возможно использовать сцинтилляционные кристаллы, они определяют нахождение веществ по характерному свечению.

Какой дозиметр выбрать

Чтобы определиться какой дозиметр выбрать, нужно понять, кокой вид радиации для человека представляет опасность и что желательно контролировать в повседневной жизни.

Все виды радиации опасны, но в бытовой сфере и окружающей нас среде, можно столкнуться с действием в основном трех видов радиации – это бета, гамма и альфа излучение. Наибольшую опасность представляет альфа излучение, так как оно наносит живой ткани наибольший урон. Но зарегистрировать альфа излучение сложнее всего, потому что для его измерения, дозиметр должен быть поднесен вплотную к источнику излучения, так как альфа излучение распространяется в пространстве на небольшие расстояния в пределах 2-3 см. Дозиметры способные зарегистрировать альфа излучение, должны иметь отдельный датчик в дополнении к датчику Гейгера-Мюллера. Обычно это специальное окошечко в дозиметре, которое имеет сдвигаемую защитную крышку.

Если позволяют денежные средства, то лучше купить дозиметр способный измерять три вида радиации – бета, гамма и альфа излучение.

Если вы не хотите тратиться на покупку дорогого прибора, то можно приобрести дозиметр-радиометр, измеряющий бета и гамма излучение. Это неплохое начало и возможно поможет вам избежать серьезных проблем со здоровьем. Такой прибор отлично подойдет для измерения общего радиационного фона в помещении и вне его. С помощью данного дозиметра можно проверить на безопасность продукты питания, строительные материалы, автомобиль и любые другие бытовые вещи.

При выборе дозиметра следует обратить внимание на следующие характеристики:

тип используемого детектора – это основной параметр, влияющий на точность и функциональность прибора. Лучше если это будет газоразрядный детектор, например, счетчик Гейгера-Мюллера. Хуже если это полупроводниковый детектор.

виды измеряемой радиации – прибор может измерять как один вид радиации, так и несколько видов. При измерении нескольких видов радиации, измерения могут проводиться одновременно для различных видов излучений, или необходимо будет переключаться с одного вида излучения на другой. Самый простой и распространенный вид дозиметра – это измерение бета излучения. Но лучше, если дозиметр будет способен измерять три вида излучений – альфа, бета, гамма.

погрешность измерения – это величина, которая характеризует точность прибора. Чем меньше погрешность, тем выше точность прибора, соответственно тем он лучше и дороже. Для бытовых приборов погрешность обычно составляет ±25% или ±30%. Для профессиональных дозиметров погрешность уже будет меньше чем ±7%.

диапазон измеряемых величин – это максимальное и минимальное значение радиации, которое способен зарегистрировать прибор

Стоит обратить внимание лишь на нижний порог измерений, он не должен быть выше чем 0,05 мкЗв/ч. Максимально измеряемый уровень радиации у всех дозиметров достаточно высок.

поверка прибора – это отметка в паспорте дозиметра, что он проверен на заводе изготовителе и соответствует заявленным в паспорте техническим характеристикам и производит измерения с заданной точностью

Желательно, чтобы отметка о поверке была в паспорте. В крайнем случае, в паспорте изделия должна стоять отметка ОТК (отдел технического контроля) о приемке изделия.

Читайте так же:
Оплата счетчиков что входит

Остальные характеристики дозиметра влияют на его удобство эксплуатации, внешний вид и выбираются исходя из личных предпочтений.

Для чего нужно покупать дозиметр?

Для чего нужно приобритать дозиметр в бытовых целях, каждый решает сам.

В качестве информации к размышлению, можно посмотреть сюжет любительской видео съемки в городе Крансодаре, который является одним из самых безопасносных городов России в отношении экологической обстановки. В простом лесном массиве, безобидные на вид предметы (7-я минута видео), излучают радиацию в миллионы раз превышающие безопасную норму. Находясь даже незначительное время в подобной зоне, можно получить дозу, которая с большой вероятностью приведет к крайне негативным последствиям для организма. К сожалению далеко не всегда, возле подобных объектов установлены занки “опасно радиация”. Всему виной халатность и безответственность. Поэтому даже прогуливаясь в каком либо месте (фактически любом), человек может и не подозревать, что подвергается мощному радиационному воздействию. А потом удивляться, откуда берутся различные проблемы со здоровьем.

Приборы измерения радиации

Такой широкий спектр различного рода загрязнителей нуждается в весьма точном и выверенном измерении. Вне зависимости от того, быт это или же промышленные мощности, нужны эффективные методы измерения радиации. С этой целью были созданы дозиметры – приборы, обладающие рядом свойств, благодаря которым можно точно сказать, какому типу излучения подвергается определенный участок местности.

Рисунок 5. Полупроводниковый детектор (1), Газоразрядный детектор (2), Сцинтилляционный детектор (3)

Они бывают различных типов (Рисунок 5):

  • Газоразрядные детекторы. В утрированном варианте это камера конденсатора, заполненная инертным, не проводящим электричество, газом. При возникновении ионизированной частицы в результате радиоактивного облучения образуется пробивной разряд высокой мощности. Это регистрируется датчиком, проходя через математическую плату, подсчитывается уровень облучения.
  • Сцинтилляционные детекторы основаны на свойстве некоторых веществ излучать видимый свет при поглощении ими ионизирующего излучения. Свет попадает на фотоприемник, преобразуется из аналогового в цифровой импульс, где по частоте счетный блок устройства определяет тип и уровень радиации.
  • Полупроводниковый детектор. Принцип действия аналогичен газоразрядному, но с поправкой на твердое активное тело, зажатое между двумя электродами.

В чем измеряется радиация на мерной шкале каждого из них – те же Рентгены, Зиверты и Греи.

Бытовые дозиметры

Рисунок 6. Варианты бытовых дозиметров

Обычно ошибка лежит в пределе от 25% до 35%. Обусловлено подобное наличием только одной газоразрядной камеры, что также сказывается на продолжительности измерений – от 40 секунд. Такие устройства не считаются средствами точного измерения и не подлежат специальной сертификации в государственных органах (Рисунок 6). Их применение ограничивается собственными нуждами в быту. Государственные структуры не принимают в расчет показания бытовых дозиметров из-за низкой точности и больших погрешностей. Индивидуальные счетчики Гейгера можно приобрести в свободном доступе. К сожалению, они ограничены не только точностью, но и диапазоном замеряемых частот.

Профессиональные дозиметры

Профессиональные дозиметры (Рисунок 7) обладают рядом преимуществ по сравнению с бытовыми. Первое, бросающееся в глаза различие – более широкий диапазон измеряемых частот и высокая точность. При более детальном рассмотрении можно обнаружить дополнительно встроенные функции. К примеру, замер альфа-частиц, рентгеновских лучей, бета-облучения в зоне загрязнения. Конструкционные особенности высокочувствительных элементов позволяют сократить время анализа до нескольких секунд. Это способствует оперативному измерению в полевых условиях. Также программное обеспечение обладает функционалом, который обеспечивает гибкие настройки: например, сообщения по достижению определенной дозы радиации; индивидуальные сигналы оповещения для различных типов радиационного воздействия. Данный тип устройств подлежит государственному учету и сертификации в ряде некоторых стран.

Радиационная разведка — ДП-5

ДП-5 Измеритель мощности дозы (рентгенометр)

Вследствие аварии на четвертом блоке Чернобыльской АЭС (ЧАЭС) произошло широкомасштабное загрязнение территории радиоактивными веществами, окружающей природной среды, различных поверхностей техники, оборудования, сооружений. В связи с чем значительно возросло воздействие ионизирующих излучений на людей.
Важным этапом при реализации работ по оценке и ликвидации последствий разрушения ядерного энергоблока являлось своевременное обнаружение радиоактивного загрязнения местности и оценка степени опасности ионизирующих излучений для принятия решений об эвакуации населения, работы войск гражданской обороны и т.д.

Основной целью дозиметрии в после аварийный период в зоне отчуждения ЧАЭС было:

  • выявление и определение степени опасности ионизирующих излучений для населения;
  • обнаружение и измерение мощности экспозиционной и поглощенной доз излучения для успешного проведения работ по минимизации последствий аварии, создания локализующей оболочки, дезактивационных работ и т.д.;
  • измерение активности радиоактивных веществ, уровня загрязнения, степени заражения гамма-излучением различных поверхностей объектов для определения необходимости и полноты проведения дезактивации и санитарной обработки, а также определения пригодности зараженных продуктов, воды к употреблению;
  • измерение экспозиционной и поглощенной доз облучения в целях определения жизнедеятельности населения в радиационном отношении;

Одним из наиболее используемых приборов, который применялся войсками гражданской обороны для радиационной разведки и контроля степени радиационного загрязнения в зоне заражения ЧАЭС был измеритель мощности дозы ДП-5.
Ниже представлено назначение, устройство и правила эксплуатации ДП-5, которым были оснащены формирования гражданской обороны.

Читайте так же:
Инструкция по эксплуатации счетчика дельта

Особенности применения ДП-5 при радиационной разведке в зоне заражения ЧАЭС

Дозиметры ДП-5 выдавались из расчета один прибор на группу (звено) 15 человек. ДП-5 выдавался командно-начальствующему составу, а также лицам, действующим в отрыве от своих формирований каждому по дозиметру.
Контроль радиоактивного заражения проводился на площадках путем измерения степени заражения объектов по гамма-излучению с помощью измерителей мощности дозы ДП-5В. Из измеренного значения вычитался гамма-фон, предварительно замеренный на площадке при удалении от нее объектов измерения на расстояние более 15-20 м. Контроль радиоактивного заражения осуществлялся сплошным способом (когда проверяется 100 % людей и техники) и выборочным (когда проверяется некоторая их часть).
На основании полученных результатов контроля определялся объем работ по санитарной обработке людей и обеззараживанию техники, транспорта, одежды, средств индивидуальной защиты, продовольствия, воды и других материальных средств, а также определялся порядок их использования в работах по ликвидации аварии в Чернобыльской зоне отчуждения.

Назначение и устройство ДП-5

Измерители мощности дозы ДП-5А (Б) и ДП-5В предназначены для измерения уровней радиации на местности и радиоактивной зараженности различных предметов по гамма-излучению. Мощность гамма-излучения определяется в миллирентгенах или рентгенах в час для той точки пространства, в которой помещен при измерениях соответствующий счетчик прибора. Кроме того, имеется возможность обнаружения бета излучения.

Внешний вид и схема укладки ДП-5В
1 – прибор ДП-5В; 2 – блок детектирования; 3 – кабеля; 4 – штанга; 5 – телефоны.

Диапазон измерений по гамма-излучению от 0,05 мР/ч до 200 Р/ч в диапазоне энергий гамма квантов от 0,084 до 1,25 Мэв. Приборы ДП-5А, ДП-5Б и ДП-5В имеют шесть поддиапазонов измерений . Отсчет показаний приборов производится по нижней шкале микроамперметра в Р/ч, по верхней шкале — в мР/ч с последующим умножением на соответствующий коэффициент поддиапазона. Участки шкалы от нуля до первой значащей цифры являются нерабочими. Приборы имеют звуковую индикацию на всех поддиапазонах, кроме первого. Звуковая индикация прослушивается с помощью головных телефонов .
Питание приборов осуществляется от трех сухих элементов типа КБ-1 (один из них для подсвета шкалы), которые обеспечивают непрерывность работы в нормальных условиях не менее 40 ч — ДП-5А и 55 ч — ДП-5В. Приборы могут подключаться к внешним источникам постоянного тока напряжением 3,6 и 12В — ДП-5А и 12 или 24В — ДП-5В, имея для этой цели колодку питания и делитель напряжения с кабелем длиной 10 м соответственно.

Устройство приборов ДП-5А (Б) и ДП-5В. В комплект прибора входят:

  • футляр с ремнями;
  • удлинительная штанга; колодка питания к ДП-5А (Б) и делитель напряжения к ДП-5В;
  • комплект эксплуатационной документации и запасного имущества;
  • телефон и укладочный ящик.

Измеритель мощности дозы (рентгенметр) ДП-5В
1 – телефоны; 2 – футляр с крышкой; 3 – тумблер подсвета шкалы микроамперметра; 4 – шкала микроамперметра; 5 – кнопка сброса показаний микроамперметра; 6 – переключатель диапазонов; 7 – гибкий кабель; 8 – блок детектирования; 9 – удлинительная штанга.

Прибор состоит из измерительного пульта; зонда в ДП-5А (Б) или блока детектирования в ДП-5В /, соединенных с пультами гибкими кабелями; контрольного стронциевриттриевого источника бета излучений для проверки работоспособности приборов (с внутренней стороны крышки футляра у ДП-5А(Б) и на блоке детектирования у ДП-5В).
Измерительный пульт состоит из панели и кожуха. На панели измерительного пульта размещены: микроамперметр с двумя измерительными шкалами; переключатель поддиапазонов; ручка «Режим» 6 (потенциометр регулировки режима); кнопка сброса показаний («Сброс»); тумблер подсвета шкалы; винт установки нуля; гнездо включения телефона . Панель крепится к кожуху двумя невыпадающими винтами. Элементы схемы прибора смонтированы на шасси, соединенном с панелью при помощи шарнира и винта. Внизу кожуха имеется отсек для размещения источников питания. При отсутствии элементов питания сюда может быть подключен делитель напряжения от источников постоянного тока. Воспринимающими устройствами приборов являются газоразрядные счетчики, установленные: в приборе ДП-5А — один (СИЗБГ) в измерительном
пульте и два (СИЗБГ и СТС-5) в зонде; в приборе ДП-5В — два (СБМ-20 и СИЗБГ) в блоке детектирования.

Устройство блока детектирования
1 – поворотный экран; 2 – окно; 3 – стальной корпус; 4 – опорные выступы; 5 – контрольный источник; 6 – гайка

Зонд и блок детектирования представляет собой стальной цилиндрически корпус с окном для индикации бета излучения, заклеенным этилцеллюлозной водостойкой пленкой, через Которую проникают бета частицы. На Корпус надет металлический поворотный экран, который фиксируется в двух Положениях («Г» и «Б») на зонде и в трех положениях («Г», «Б» и «К») на блоке детектирования. В положении «Г» окно корпуса закрывается экраном и в счетчик могут проникать только гамма лучи. При повороте экрана в положение «Б» окно корпуса открывается и бета частицы проникают к счетчику. В положении «К» контрольный источник бета излучения, который укреплен в углублении на экране, устанавливается против окна и в этом положении проверяется работоспособность прибора ДП-5В.
На корпусах зонда и блока детектирования имеются по два выступа, с помощью которых они устанавливаются на обследуемые поверхности при индикации бета зараженности. Внутри корпуса находится плата, на которой смонтированы газоразрядные счетчики, усилитель-нормализатор и электрическая схема.
Футляр прибора состоит: ДП-5А — из двух отсеков (для установки пульта и зонда); ДП-5В — из трех отсеков (для размещения пульта, блока детектирования и запасных элементов питания). В крышке футляра имеются окна для наблюдения за показаниями прибора. Для ношения прибора к футляру присоединяются два ремня.
Телефон состоит из двух малогабаритных телефонов типа ТГ-7М и оголовья из мягкого материала. Он подключается к измерительному пульту и фиксирует наличие радиоактивных излучений: чем выше мощность излучений, тем чаще звуковые щелчки.
Из запасных частей в комплект прибора входят чехлы для зонда, колпачки, лампочки накаливания, отвертка, винты.

Читайте так же:
Как заполнять извещения по счетчикам

Порядок подготовки к измерениям прибора ДП-5

Подготовка прибора к работе проводится в следующем порядке:

  • извлечь прибор из укладочного ящика, открыть крышку футляра, провести внешний осмотр, пристегнуть к футляру поясной и плечевой ремни;
  • вынуть зонд или блок детектирования; присоединить ручку к зонду, а к блоку детектирования — штангу (используемую как ручку);
  • установить корректором механический нуль на шкале микроамперметра;
  • подключить источники питания;
  • включить прибор, поставив ручки переключателей поддиапазонов в положение: «Реж.» ДП-5А и «А» (контроль режима) ДП-5В (стрелка прибора должна установиться в режимном секторе);
  • в ДП-5А с помощью ручки потенциометра стрелку прибора установить в режимном секторе на «Т». Если стрелки микроамперметров не входят в режимные сектора, необходимо заменить источники питания.

Проверку работоспособности приборов проводят на всех поддиапазонах, кроме первого («200»), с помощью контрольных источников, для чего экраны зонда и блока детектирования устанавливают в положениях «Б» и «К» соответственно и подключают телефоны. В приборе ДП-5А открывают контрольный бета-источник, устанавливают зонд опорными выступами на крышку футляра так, чтобы источник находился против открытого окна зонда. Затем, переводя последовательно переключатель поддиапазонов в положения «X 1000» ,«Х 100», «X 10», «X 1» и «X 0,1», наблюдают за показаниями прибора и прослушивают щелчки в телефонах. Стрелки микроамперметров должны зашкаливать на VI и V поддиапазонах, отклоняться на IV, а на III и II могут не отклоняться из-за недостаточной активности контрольных бета источников. После этого ручки переключателей поставить в положение «Выкл.» ДП-5А и «А» — ДП-5В; нажать кнопки «Сброс»; повернуть экраны в положение «Г». Приборы готовы к работе.

Радиационная разведка местности

Радиационную разведку местности, с уровнями радиации от 0,5 до 5 Р/ч, производят на втором поддиапазоне (зонд и блок детектирования с экраном в положении «Г» остаются в кожухах приборов), а свыше 5 Р/ч — на первом поддиапазоне. При измерении прибор должен находиться на высоте 0,7—1 м от поверхности земли.
Степень радиоактивного заражения кожных покровов людей, их одежды, сельскохозяйственных животных, техники, оборудования, транспорта и т. п. определяется в такой последовательности. Измеряют гамма-фон в месте, где будет определяться степень заражения объекта, но не менее 15—20 м от обследуемого объекта. Затем зонд (блок детектирования) упорами вперед подносят к поверхности объекта на расстояние 1,5—2 см и медленно перемещают над поверхностью объекта (экран зонда в положении «Г»). Из максимальной мощности экспозиционной дозы, измеренной на поверхности объекта, вычитают гамма-фон. Результат будет характеризовать степень радиоактивного заражения объекта.
Для определения наличия наведенной активности техники, подвергшейся воздействию нейтронного излучения, производят два измерения — снаружи и внутри техники. Если результаты измерений близки между собой, это означает, что техника имеет наведенную активность.
Для обнаружения бета излучений необходимо установить экран зонда в положении «Б», поднести к обследуемой поверхности на расстояние 1,5—2 см. Ручку переключателя поддиапазонов последовательно поставить в положения «X 0,1», «X 1», «X 10» до получения отклонения стрелки микроамперметра в пределах шкалы. Увеличение показаний прибора на одном и том же поддиапазоне по сравнению с гамма измерением показывает наличие бета излучения.
Если надо выяснить, с какой стороны заражена поверхность брезентовых тентов, стен и перегородок сооружений и других прозрачных для гамма-излучений объектов, то производят два замера в положении зонда «Б» и «Г». Поверхность заряжена с той стороны, с которой показания прибора в положении зонда «Б» заметно выше.
При определении степени радиоактивного заражения воды отбирают две пробы общим объемом 1,5—10 л. Одну — из верхнего слоя водоисточника, другую — с придонного слоя. Измерения производят зондом в положении «Б», располагая его на расстоянии 0,5-1 см от поверхности воды, и снимают показания по верхней шкале.
На шильниках крышек футляра даны сведения о допустимых норм радиоактивного заражения и указаны поддиапазоны, на которых они измеряются.

Литературные источники о ДП-5:

  1. Приборы радиационной химической разведки и дозиметрического контроля. Методическая разработка. / НГТУ; Сост.: В.А. Днепровский. Н.Новгород, 1992.-18с.
  2. Горишний В.А., Чернецов В.Б., Волков В.В., Борисенко Л.Н. Приборы дозиметрического и химического контроля для объектов экономики: Метод. разработка / НГТУ; Сост.: В.А. Горишний и др., Н.Новгород, 2003. с.
  3. Максимов М.Г и др.. Радиоактивные загрязнения и их измерение. -М.:Энергоатомиздат, 1989. — 304 с.

Публикации по теме:

  1. Контроль облучения во время ликвидации аварии на ЧАЭСКонтроль участников ликвидации аварии на ЧАЭС в 1986 году -.
  2. Бытовой дозиметр: использованиеМощное загрязнение радионуклидами больших территорий, привело к необходимости определения радиационной.
  3. ДозиметрыМарки дозиметров — портативные дозиметрические приборы для населения.
  4. Современные дозиметрыОбзор современных марок бытовых дозиметров и советы по выбору приборов.
  5. Радиационный фон в УкраинеКарта радиационного фона на территории Украины.
  6. ЧАЭС: Ликвидация аварииЛиквидация аварии на ЧАЭС потребовала использовать уникальные технологии, методы и.
  7. АТОМНЫЙ ШТРАФБАТАнализ национальных особенностей ликвидации последствий радиационных аварий.
  8. ЧАЭС: Средства защиты органов дыханияРеспраторы, которые используются при работах в зоне радиационного загрязнения. Советы.
Читайте так же:
Проект внедрения умных счетчиков

Устройство дозиметра

Устройство прибора для измерения уровня радиации довольно простое. Компоненты дозиметра:

  • датчик излучения;
  • съемные фильтры;
  • счетное устройство;
  • индикационная система.

Главной составляющей устройства является датчик. Среди них различают несколько типов.

  • Датчик на основе сцинтиляционных кристаллов. Он является универсальным для всех видов излучения. Когда через кристаллы проходят ионизированные частицы, в нем генерируются фотоны. Дозиметры с таким датчиком обладают высокой точностью измерений и стоят достаточно дорого.
  • Датчики с полупроводников детектором. Электропроводность проводников изменяется при прохождении через датчик заряженных частиц. Такие устройства имеют небольшую цену, но и точность измерений, как правило, невысока.
  • Газоразрядные датчики. Устройство простое: стеклянный цилиндр, заполненный газом, и провод внутри цилиндра. Радиоактивные частицы воздействуют на газ, проходя через цилиндр, и возникает электричество. Пример такого датчика — счетчик Гейгера-Мюллера. Приборы с таким датчиком имеют невысокую цену и подходят для обнаружения бета- и гамма-излучения.

Приборы радиационной разведки (их называют также дозиметрическими приборами) предназначены для измерения мощности ионизирующих излучений (уровня радиации) на радиоактивно зараженной местности и степени радиоактивного заражения различных предметов. К ним относятся измерители мощности дозы ионизирующих излучений (рентгенометры) ДП-5А, ДП-5Б, ДП-5В.

Основы ионизационного метода обнаружения радиоактивных веществ

В современных дозиметрических приборах наиболее распространен ионизационный метод обнаружения и измерения ионизирующих излучений. Он основан на использовании одного из свойств радиоактивных веществ — их способности ионизировать среду, в которой они распространяются (то есть расщеплять нейтральные молекулы или атомы на пары: положительные — ионы и отрицательные — электроны). Если взять замкнутый объем газа и приложить к нему электрическое напряжение, то образующиеся в нем при облучении электроны и ионы придут в упорядоченное движение: первые будут перемещаться к аноду, вторые — к катоду. В результате между электродами (анодом и катодом) возникает так называемый ионизационный ток, величина которого прямо пропорциональна мощности дозы ионизирующего излучения. По силе ионизационного тока можно судить об интенсивности излучений.

Ионизационные камеры и газоразрядные счетчики. Принцип их работы

Воспринимающими устройствами дозиметрических приборов являются ионизационные камеры и газоразрядные счетчики.


Рис. 118. Схема ионизационной камеры: 1 — внутренняя поверхность и сердечник камеры (положительный электрод); 2 — металлическое кольцо (отрицательный электрод); 3 — днище камеры; 4 — янтарный изолятор; 5 — охранное кольцо

Ионизационная камера (рис. 118) представляет собой заполненный воздухом замкнутый объем, в котором помещены положительный и отрицательный электроды. Анодом в ней служит токо-проводящий слой, катодом — металлический стержень. К электродам подводится напряжение от источника питания, создающее в камере электрическое поле. Если ионизирующих излучений нет, то воздух в камере не ионизирован и не проводит электрический ток. Под воздействием излучений воздух ионизируется, цепь замыкается и по ней проходит ионизационный ток. Он поступает в электрическую схему прибора (рис. 119), усиливается, преобразуется и измеряется микроамперметром, шкала которого отградуирована в рентгенах в час или миллирентгенах в час. Подобные ионизационные камеры применяются в приборах, которыми измеряют мощность дозы гамма-излучений (уровень радиации) на местности.


Рис. 119. Структурная схема устройства дозиметрических приборов: 1 — детектор излучения; 2 — ионизирующие излучения; 3 — микроамперметр; 4 — источники питания

Газоразрядный счетчик (рис. 120) представляет собой металлический (или стеклянный) цилиндр, заполненный разреженной смесью инертных газов с небольшими добавками, улучшающими его работу. Анодом служит тонкая металлическая нить, натянутая внутри корпуса, который является катодом (у счетчиков из стекла катод — тонкий слой металла, нанесенный на внутреннюю поверхность корпуса).


Рис. 120. Газоразрядный счетчик с металлическим корпусом: 1 — корпус счетчика (катод); 2 — нить счетчика (анод); 3 — выводы; 4 — изоляторы

Газоразрядное счетчики применяются в приборах, предназначенных для обнаружения и измерения степени зараженности различных поверхностей радиоактивными веществами. Они могут также использоваться для измерения мощности дозы гамма-излучений (уровня радиации).


Рис. 121. Рентгенометр ДП-5А: 1 — кабель телефоной; 2 — футляр; 3 — крышка футляра, 4 — измерительный пульт; 5 — контрольный препарат; 6 — зонд; 7 — кабель зонда; 8 — удлинительная штанга

Измеритель мощности дозы (рентгенометр), его назначения тактико-технические данные и устройство

Измерители мощности дозы (рентгенометры) ДП-5А (рис. 121), ДП-5Б и ДП-5В являются основными дозиметрическими приборами для измерения мощности дозы излучения (уровня радиации) и радиоактивной зараженности различных предметов по гамма-излучению. Диапазон измерений ДП-5А разбит на шесть поддиапазонов (табл. 13).


Таблица 13

Основные части прибора — измерительный пульт и зонд, соединенный с пультом с помощью гибкого кабеля длиной 1,2 м. Кроме того, в комплект измерителя мощности дозы (рентгено-метра) входят: телефон, удлинительная штанга, аккумуляторная колодка для подключения прибора к внешнему источнику постоянного тока, футляр с ремнями и контрольным препаратом (радиоактивным источником), запасное имущество.

Читайте так же:
Мтс 970h сброс счетчика


Рис. 122. Измерительный пульт ДП-5А: 1 — кожух; 2 — панель; 3 — кнопка сброса показаний микроамперметра; 4 — гнездо включения телефонов; 5 — ручка потенциометра регулировки режима работы; 6 — микроамперметр; 7 — тумблер подсвета шкал; 8 — переключатель поддиапазонов; 9 — разъемное соединение для подключения кабеля зонда; 10 — пробка корректора механической установки нуля

На панели измерительного пульта (рис. 122) размещаются: микроамперметр, переключатель поддиапазонов, ручка потенциометра регулировки режима работы, кнопка сброса показаний, тумблер подсвета шкал, гнездо включения телефонов.

Зонд (рис. 123) герметичен. В нем размещены два газоразрядных счетчика и другие элементы электрической схемы, имеется окно для индикации бета-излучения, заклеенное водостойкой пленкой, а также поворотный экран, который фиксируется в двух положениях — «Б» и «Г».


Рис. 123. Зонд со снятым корпусом: 1 — стальной корпус; 2 — поворотный экран; 3 — окно; 4 — опорный выступ; 5 — газоразрядный счетчик СИ-ЗБГ; 6 — газоразрядный счетчик СТС-5: 7 — плата; 8 — накидная гайка; 9 — ручка

Питается прибор от трех элементов, которые обеспечивают его непрерывную работу в течение 40 часов, или от посторонних источников постоянного тока напряжением 3, 6 или 12 В. Масса прибора 2,1 кг.

Подготовка прибора к работе

При подготовке прибора к работе нужно установить стрелку микроамперметра на ноль, ручку «Режим» повернуть против хода часовой стрелки до упора, ручку переключателя поддиапазонов установить в положение «Выкл.», вскрыть отсек питания и подсоединить сухие элементы, соблюдая при этом полярность. Затем включить прибор, поставив переключатель в положение «Реж.», и, плавно вращая ручку «Режим» по ходу часовой стрелки, установить стрелку микроамперметра на треугольную метку шкалы. После этого надо проверить работоспособность прибора по контрольному препарату — установить экран головки зонда в положение «Б» и поднести его к радиоактивному источнику, предварительно открыв его, вращая защитную пластинку вокруг оси и подключив телефон. Затем переключатель последовательно устанавливают в положения: «X lOOO», «X lOO», «X lO», «X l», «Х 0,1». При этом в телефоне должны прослушиваться щелчки, на поддиапазоне «Х 10» стрелка прибора отклонится примерно до середины шкалы, а на поддиапазонах «Х 1» и «Х 0,1» — за пределы шкалы.

Измерение мощности дозы излучения (уровня радиации) на местности и радиоактивного заражения различных поверхностей и воды

Измерение мощности дозы излучения (уровня радиации) на местности производится по шкале «0 — 5» (при мощности дозы излучения до 5 Р/ч) при положении переключателя «Х 1000», а при более высокой мощности — по шкале «0 — 200» при положении переключателя «200». Пульт прибора с зондом должен находиться на уровне груди; зонд должен быть уложен в чехол.

Определение степени заражения кожных покровов людей, одежды, техники, транспорта, продовольствия, воды и других предметов производят на поддиапазонах «Х 100», «Х 100», «Х 10», «Х 1», «Х 0,1», снимая показания по верхней шкале («0 — 5») прибора и умножая их на коэффициент, соответствующий положению переключателя поддиапазонов. Так, если при измерении степени заражения кожного покрова человека показания по верхней шкале прибора составят 2,5 мР/ч, а переключатель поддиапазонов находится в положении «Х 10», степень заражения составит 25 мР/ч.

Перед измерениями степени заражения определяют величину гамма-фона, для этого измеряют мощность дозы излучения (уровень радиации) на расстоянии 15 — 20 м от зараженного объекта. Затем зонд прибора подносят к поверхности зараженного объекта и перемещением вдоль нее по частоте щелчков в телефонах отыскивают наиболее зараженный участок. Зонд устанавливают на высоте 1 — 1,5 см над местом максимального заражения, переключатель ставят в положение, при котором стрелка прибора дает показания в пределах шкалы, и снимают показания. Из полученных показаний вычитают значение гамма-фона. Например, если при измерении величина гамма-фона составит 200 мР/ч, а величина суммарной зараженности объекта 250 мР/ч, то величина зараженности объекта составит 50 мР/ч.

Уход за приборами

Устройство приборов ДП-5Б и ДП-5В и работа с ними в основном аналогичны устройству прибора ДП-5А и работе с ним. Дозиметрические приборы хранятся в помещениях, температура воздуха в которых поддерживается от 10 до 25°С, относительная влажность — от 50 до 65%. Они размещаются в шкафах на полках.

При хранений приборов более десяти суток источники питания необходимо отключить, вынуть из приборов и хранить отдельно в сухом прохладном (температура воздуха от 4 — 5 до -6° С) и затемненном помещении. Выводы источников питания должны быть тщательно изолированы.

При эксплуатации приборов необходимо обращаться с ними осторожно и правильно использовать. Нельзя, например, подвергать приборы длительному воздействию прямых солнечных лучей, дождя или снега, следует защищать их от грязи и пыли, от ударов и сотрясений, при перевозках в автомобилях не ставить на дно кузова. Запрещается вскрывать контрольные радиоактивные препараты, прикасаться к их поверхности голой рукой.

1. В чем сущность ионизационного метода обнаружения радиоактивных веществ и измерения ионизирующих излучений?

2. Как подготовить ДП-5А к работе?

3. Расскажите о требованиях по уходу за дозиметрическими приборами.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector