Схема устройства торможения электросчетчика
Трёхфазные асинхронные двигатели: методы торможения
Главная страница » Трёхфазные асинхронные двигатели: методы торможения
Значительное число приводных систем используются при естественном замедлении работы двигателей в процессе остановки. Время, затрачиваемое на остановку ротора, измеряется исключительно инерционным моментом и моментом сопротивления вращению. Между тем нередко эксплуатация систем требует сокращать время остановки вала мотора и в этом случае электрическое торможение хода электродвигателя видится простым и эффективным решением. По сравнению устройствами, где применяются механический или гидравлический способы, электрическое торможение двигателей имеет явные преимущества в плане устойчивости действия и экономичности применения.
Устройство и принцип работы электрического счетчика
В этой статье мы вам расскажем устройство и принцип работы электрического счетчика, чтобы вам было проще воспринимать всю информацию, мы для вас подготовили основные схемы и изображения. С помощью них вы сможете узнать, из чего состоит электрический считчик, как он работает.
- Индукционные.
- Электронное.
Устройство индукционного счетчика
Индукционный счетчик состоит из двух основных электромагнитов, они расположены между собой под острым углом в 90 градусов напротив друг друга. В магнитном поле находиться алюминиевый диск, именно он и показывает нам расход энергии.
Чтобы включить счетчик в цепь, необходимо его токовую обмотку соединить со всеми электроприемниками последовательно. Обмотка напряжения подключается параллельно.
Во время прохождения электрического тока по обмоткам индукционного счетчика в сердечниках возникают переменные магнитные потоки, оно пронизывают алюминиевый диск и индуцируют в нем так называемые вихревые токи.
Будет интересно узнать, какой счетчик лучше поставить в доме.
Вихревые токи взаимодействуют с магнитными потоками и создают усилия, с помощью которого и начинает крутиться диск. Диск непосредственно связан со стандартным счетным механизмом. В зависимости от частоты вращения диска и происходит учет потребляемой электрической энергии.
Следующим образом выглядит схема устройства электрического счетчика.
Сделаем небольшую расшифровку:
- Обмотки тока.
- Обмотки напряжения.
- Механизм червячный.
- Механизм счетный.
- Диск из алюминия.
- Магнит, который притормаживает работу диска.
Схему выше мы с вами уже рассмотрели, теперь посмотрите, как выглядит электрический счетчик в разрезе (вживую).
Если потребляемая электроэнергия большая, тогда используются трехфазные индукционные счетчики, принцип их работы схожий с однофазным. Смотрите видео, как устроен электрический счетчик.
Электроэнергия сейчас дорога — это не секрет. Но плату за все это хозяйство можно существенно уменьшить. Тут главное чувство меры. Если выясняется, что за полгода вы не потребили ни киловатта — жди инспекции энергонадзора со всеми вытекающими. То есть платить за электричество все равно нужно, желательно регулярно и не менее чем за кВт. А остальное можно слегка и убавить. Если соблюдать эти простые правила и не наглеть, то залет практически исключен.
Остановка счетчиков воды, остановка счетчиков электричества, остановка счетчика магнитом, радиоаппаратура, радио схемы. Использование трансформатора для отмотки Обсуждение устройства, недостатков, поломок, ремонтов. Для таких тем есть закрытый раздел форума. Если сообщение относится к спаму, оно будет удалено вместе с пользователем.
То есть ели на первую клемму счетчика приходит фаза необходимо исправить это. Для этого надо выключить выключатель и поменять местами отходящие провода. Внешне это будет абсолютно незаметно. Если у вас частный дом при необходимости вы можете поменять местами провода на вводе в дом или на опоре. Возможно это придется делать под напряжением или отключать воздушную линию.
Классификация приборов тормозного оборудования
Тормозное оборудование подвижного состава разделяется на пневматическое, приборы которого работают под давлением сжатого воздуха, и механическое — тормозная рычажная передача.Пневматическое тормозное оборудование по своему назначению делится на следующие группы:
Приборы, служащие для получения и хранения сжатого воздуха:
- компрессоры;
- главные резервуары.
Приборы управления тормозами:
- поездные краны машиниста;
- кран вспомогательного локомотивного тормоза;
- разобщительный, комбинированный краны;
- устройство блокировки тормозов;
- регулятор давления.
Приборы торможения:
- воздухораспределители;
- запасные резервуары;
- авторежимы;
- тормозные цилиндры;
- реле давления (повторители).
Воздухопроводы и арматура:
- магистрали и отводы от магистралей;
- воздушные фильтры;
- разобщительные, концевые и трехходовые краны, стоп-краны;
- обратные, переключательные. предохранительные и выпускные клапаны;
- пылеловки и влаго-маслоотделители;
- соединительные рукава.
Приборы контроля:
- манометры;
- ЭПК автостопа;
- локомотивные скоростемеры;
- пневмоэлектрический датчик контроля целостности тормозной магистрали;
- датчики-реле давления;
- сигнализаторы оттека тормозов.
Механическая рычажная передачи включает в себя следующие основные детали:
- триангели или траверсы;
- ертикальные и горизонтальные рычаги;
- винтовые и гладкие тяги;
- затяжки (распорки);
- тормозные башмаки и колодки;
- подвески и предохранительные скобы;
- автоматические регуляторы.
Схема пневматического тормозного оборудования электровозов ВЛ10, ВЛ10у
Грузовые электровозы постоянного тока ВЛ10, ВЛ10у имеют автоматический, вспомогательный прямодействующий, электрический (рекуперативный) и ручной тормоз. Особенностью тормозной системы двухсекционных электровозов ВЛ10, ВЛ10у постоянного тока является установка одного воздухораспределителя на двухкузовной локомотив.
На каждой секции электровоза установлен основной компрессор (К1) типа КТ6Эл и три главных резервуара (ГР) объемом по 250 литров каждый. На напорной трубе от компрессора к главным резервуарам находятся два предохранительных клапана (КП1, КП2) № Э-216, обратный клапан (КО1) № Э-155 и маслоотделитель (МО1) № Э-120. Предохранительный клапан КП1 отрегулирован на 9,8 кгс/см2, а клапан КП2 на 9,5 кгс/см2. Главные резервуары сообщены с питательной магистралью (ПМ) через разобщительный кран 6. Конденсат из главных резервуаров вытекают через электропневматические клапаны продувки (КЭП1-КЭП3) № КП-100 или КП-110 с электрообогревателями.
Воздух из ПМ через разобщительный кран 9 и фильтр (Ф) № 114 подходит к электропневматическому клапану автостопа (ЭПК) № 150, и через устройство блокировки тормозов (БТ) № 367м — к поездному крану машиниста (КМ) № 395 и крану вспомогательного локомотивного тормоза (КВТ) № 254.
От питательной магистрали ПМ имеются отводы к аппаратам управления электровозом и к регулятору давления (РГД) АК-11Б, который управляет работой электродвигателя компрессора К1 и отрегулирован на поддержание давления в главных резервуарах в пределах 9,0 — 7.5 кгс/см2. К аппаратам управления и в резервуар управления кгс/см2 объемом 150 л воздух из ПМ проходит через разобщительный кран 11, обратный клапан КО3 № Э-175, маслоотделитель (МО2) № 116 и редуктор давления (РЕД2), отрегулированный на давление 5,0 кгс/см2. Резервуар управления можно зарядить и от вспомогательного компрессора (К2) типа КБ-1В через обратный клапан КО4.
Из питательной магистрали через разобщительный кран 8 и редактор давления (РЕДЗ) № 348, отрегулированный на давление 5,0 кгс/см2, воздух подходит к реле давления (РД) № 304. К электропневматическому вентилю (ЭПВ) типа КП-53 воздух из ПМ подходит через редактор (РЕД1) № 348, который понижает давление питательной
магистрали с 9,0 кгс/см2 до 2,5 кгс/см2.
Через поездной кран машиниста КМ заряжается уравнительный резервуар (УР) объемом 20 л и тормозная магистраль (ТМ), из которой через разобщительный кран 10 воздух подходит к электропневматическому клапану автостопа ЭПК, электроблокировочному клапану (КЭБ) № КЭ-44, воздухораспределителю (ВР) № 483 и скоростемеру (СЛ).
Через ВР происходит зарядка запасного резервуара (ЗР) объемом 55 л. С тормозной магистралью соединен пневматический выключатель управления (ВУП1) типа ПВУ-2, размыкающий цепь управления рекуперативного тормоза электровоза при понижении давления в ТМ до 2,7 – 2,9 кгс/см2. ВУП1 замыкает свои контакты при давлении в ТМ 4,0 кгс/см2.
Тормозная магистраль ТМ может сообщаться с питательной магистралью ПМ через обратный клапан КО2 № Э-175, перед которым находится разобщительный кран 5 (кран холодного резерва). Разобщительный кран 5 открывается только при необходимости пересылки электровоза в холодном (недействующем) состоянии.
При торможение локомотива краном вспомогательного локомотивного тормоза воздух из питательной магистрали ПМ через КВТ и блокировку тормозов БТ поступает в магистраль тормозных цилиндров (МТЦ) и через блокировочный клапан КЭБ — в тормозные цилиндры (ТЦЗ, ТЦ4) второй тележки. Одновременно воздух поступает в управляющую камеру реле давления РД, которое, сработав на торможение, наполняет тормозные цилиндры (ТЦ1 и ТЦ2) первой тележки из питательной магистрали ПМ через редуктор РЕДЗ. На каждой тележке установлено по два ТЦ № 507Б диаметром 10″.
Отпуск тормоза производится постановкой ручки КВТ в поездное положение. При этом непосредственно через КВТ выходит в атмосферу воздух из ТЦ первой тележки и из управляющей камеры РД. Реле давления, в свою очередь, срабатывает на отпуск и вытекает воздух в атмосферу из ТЦ второй тележки.
При понижении давления в ТМ поездным краном машиниста КМ срабатывает на торможение воздухораспределитель ВР, который из запасного резервуара ЗР заполняет сжатым воздухом ложный тормозной цилиндр (ЛТЦ) объемом 7 литров, установленный на импульсной магистрали (ИМ). Далее по импульсной магистрали через переключательный клапан № 3ПК воздух проходит к крану вспомогательного локомотивного тормоза. КВТ срабатывает как повторитель и через электроблокировочный клапан КЭБ, катушка которого обесточена при выключенном электрическом тормозе, наполняет тормозные цилиндры ТЦ3, ТЦ4 второй тележки и управляющую камеру реле давления РД, через которое из питательной магистрали наполняются тормозные цилиндры ТЦ1 и ТЦ2 первой тележки.
Установкой ручки крана вспомогательного локомотивного тормоза КВТ в первое положение можно отпустить тормоз локомотива при заторможенном составе.
Совместное применение пневматического и рекуперативного торможения в полном объеме невозможно. При рекуперативном торможении, катушка электроблокировочного клапана КЭБ получает питание и последний перекрывает проход воздуха из магистрали тормозных цилиндров (МТЦ) в ТЦ и в управляющую камеру РД, сообщая их с атмосферой. При включенной рекуперации возможно только служебное торможение состава краном машиниста. Если в процессе рекуперативного торможения произойдет падение давления в тормозной магистрали до 2,7 – 2,9 кгс/см2 (например, при экстренном торможении), то система рекуперации отключится пневматическим выключателем отправления ВУП1. В режиме рекуперативного торможения допускается применение пневматического подтормаживания локомотива с помощью крана вспомогательного локомотивного тормоза. Пневматический выключатель управления (ВУП2) типа ПВУ-7, установленный на магистрали тормозных цилиндров, отрегулирован на выключение рекуперативного торможения при давлении в ТЦ 1,3 – 1,5 кгс/см2 и восстановление работы цепей управления тормоза при давлении в ТЦ 0,5 кгс/см2. В случае срыва рекуперативного торможения электроблокировочный клапан КЭБ обесточиться, а на катушку электропневматического вентиля ЭПВ подается питание. В результате чего воздух из ПМ под давлением 2,5 кгс/см2 переключает клапан № 3ПК и доходит в кран вспомогательного локомотивного тормоза. Происходит наполнение тормозных цилиндров, то есть замещение электрического торможения пневматикой.
При управлении тормозами соединенного поезда по системе синхронизации на локомотиве в середине состава концевой рукав 1 питательной магистрали соединяют с тормозной магистралью хвостового вагона впереди стоящего поезда и открывают концевые краны. Разобщительный кран 3 перекрывают, а разобщительный кран 2
открывают. Ручку крана машиниста КМ переводят в IV положение и закрепляют специальной скобой с целью исключения постановки КМ в положения I, II и III, а ручку трехходового крана 4 устанавливают в положение «Синхронизация включена». Таким образом, уравнительный резервуар УР сообщается с атмосферой, а полость над уравнительным поршнем крана машиниста КМ с тормозной магистралью хвостового вагона первого поезда. Следовательно, изменение давления воздуха в ТМ первого поезда вызывает перемещение уравнительного поршня КМ локомотива, находящегося в середине соединенного поезда, что в свою очередь приводит к торможению или к отпуску тормозов.
При следовании электровоза в холодном состоянии в одной кабине (секция «А») должна быть включена блокировка тормозов БТ, ручка крана машиниста КМ установлена в VI положение, а крана вспомогательного локомотивного тормоза КВТ — в поездное положение. Во второй кабине (секция «Б») ручки кранов машиниста переводят в VI положение. Комбинированные краны на устройствах блокировки тормозов в обеих кабинах устанавливают в положение двойной тяги, концевые краны на питательной магистрали закрывают, а соединительные рукава ПМ снимают. Кран 5 холодного резерва необходимо открыть. Скоростемеры, ЭПК и аппараты управления должны быть отключены от источников сжатого воздуха соответствующими разобщительными кранами. Главные резервуары одной секции необходимо отключить от питательной магистрали, перекрыв разобщительный кран 6, а на второй секции включить один главный резервуар, перекрыв разобщительный кран 7 между резервуарами. После подготовки локомотива к следованию в недействующем состоянии все ручки кранов должны быть опломбированы, а воздухораспределитель ВР переключен на средний режим торможения.
Схема тормозного оборудования электровоза ВЛ-11М Изображение Описание
Схема тормозного оборудования электровоза ВЛ-15 Изображение Описание
Схема тормозного оборудования электровоза ВЛ-80С Изображение Описание
Схема тормозного оборудования электровоза ЧС-2Т Изображение Описание
Схема тормозного оборудования электровоза ЧС-7 Изображение Описание
Схема тормозного оборудования электровоза ЭП1 Изображение Описание
Анимация (мультик) по схемам прямодействующего, непрямодействующего тормоза и ЭПТ. Для скачивания проги кликните по картинке
Отличное пособие по новому воздухораспределителю пассажирских вагонов № 242.
С анимацией и дикторским сопровождением. Для скачивания PDF кликните по картике
Торможение электродвигателя
- ВКонтакте
- ok
- YouTube
- Яндекс.Дзен
- TikTok
Производственные процессы, связанные с эксплуатацией оборудования, оснащенного электрическими двигателями переменного или постоянного тока, требуют периодической остановки. Однако после отключения питающего напряжения от электродвигателей, их роторы продолжают вращение по инерции и останавливаются только через определенный промежуток времени. Такая остановка электродвигателя называется свободным выбегом.
Для электродвигателей, работающих с частыми пусками-остановами, остановка способом свободного выбега не подходит. Чтобы сократить время, необходимое для полной остановки вращения ротора применяется принудительное торможение. Способы торможения электродвигателя подразделяются на механические и электрические.
Механическое торможение
Остановка двигателей при таком способе торможения осуществляется благодаря специальным колодкам на тормозном шкиве. После отключения питающего напряжения тормозные колодки под воздействием пружин прижимаются к шкиву. В результате возникающего трения колодок о шкив кинетическая энергия вращающегося вала преобразуется в тепловую, что и приводит к его полной остановке. После подачи напряжения электромагнит (YB) растормаживает колодки, и эксплуатация электродвигателя продолжается в штатном режиме.
В зависимости от схемы электрического торможения, кинетическая энергия вращающегося ротора может отдаваться в сеть или на батарею конденсаторов, а также преобразовываться в тепло, которое поглощается обмотками электродвигателя или специальными реостатами.
Динамическое торможение электродвигателя
Эта схема остановки подходит для трехфазных электродвигателей как с которкозамкнутым, так и с фазным ротором.
Динамическое торможение электродвигателя с короткозамкнутым ротором осуществляется посредством отключения обмоток статора от питающей сети трехфазного переменного тока и переключением двух из них через систему контакторов и реле на источник выпрямленного постоянного напряжения.
Обмотки статора после подачи на них постоянного напряжения генерируют стационарное магнитное поле, под воздействием которого в короткозамкнутой «беличьей клетке»
вращающегося ротора начинает индуцироваться электрический ток, вызывающий появление томозного момента. Направление этого момента противоположно направлению вращения останавливающегося вала. После остановки двигателя подача постоянного напряжения на обмотки статора прекращается.
В двигателях с фазным ротором величину тормозного момента можно регулировать с помощью дополнительных сопротивлений, в качестве которых используются пусковые резисторы.
Торможение противовключением
Торможение асинхронного электродвигателя методом противовключения осуществляется путем реверсирования двигателя без отключения от питающей сети.
Управление торможением выполняется реле контроля скорости. В рабочем режиме контакты реле замкнуты. После нажатия на кнопку «СТОП» (SBC) группа контакторов производит переключение двух фаз, меняя порядок их чередования. В результате этого магнитное поле статора начинает вращаться в противоположном направлении, что приводит к замедлению вращения ротора. Когда скорость вращения становится близкой к нулю, реле контроля скорости размыкает контакты и подача питающего напряжения прекращается.
Конденсаторное торможение электродвигателей
Этот способ, называемый еще торможение с самовозбуждением, применим только к электродвигателям с короткозамкнутым ротором.
После прекращения подачи питающего напряжения ротор электродвигателя продолжает вращение по инерции и генерирует в обмотках статора электрический ток, который вначале заряжает батарею конденсаторов, а после накопления номинального заряда возвращается в обмотки. Это приводит к возникновению тормозного момента, величина которого зависти от емкости конденсаторных батарей, подключенных к каждой фазе по схеме «звезда» или «треугольник». Торможение с самовозбуждением применяется на двигателях с большим числом пусков-остановов, так как величина потерь энергии в двигателях при такой схеме остановки минимальная.
Рекуперативное торможение
Рекуперативное или иначе генераторное торможение асинхронных электродвигателей на практике используется в качестве предварительного подтормаживания , а также при опускании грузов кранами всех типов или пассажирских и грузовых лифтовых кабин.
Торможение асинхронного электродвигателя в рекуперативном режиме происходит, когда номинальная частота вращения ротора превышает его синхронную частоту. Двигатель начинает генерировать электрическую энергию и отдавать ее в питающую сеть, в результате чего создается тормозящий момент. Такой способ остановки применяется для многоскоростных двигателей путем постепенного переключения с большей частоты вращения ротора на меньшую. Таким образом, в определенный момент скорость, вращающегося под воздействием инерции вала, будет больше синхронной частоты, соответствующей подключенному количеству полюсов статора. Кроме того, рекуперативная схема торможения применяется для двигателей, подключенных к преобразователям частоты. Для этого достаточно уменьшить частоту питающего напряжения.
Остановка двигателей постоянного тока (ДПТ)
Торможение электродвигателей постоянного тока осуществляется противовключением и динамическим способом.
Динамическое торможение
Такая схема торможения применяется для двигателей с независимым возбуждением.
После нажатия кнопки «Стоп» (SB1) происходит отключение обмоток якоря от питающей сети и переподключение их на тормозной резистор. В обмотках якоря, вращающегося по инерции в стационарном магнитном поле, индуцируется постоянный ток, который проходя по обмоточным проводам резистора, преобразовывается в тепловую энергию.
Торможение противовключением
Метод противовключения основан на изменении полярности напряжения, подключаемого к обмоткам индуктора или якоря двигателя. Это приводит к смене полярности магнитного потока или направлению тока, индуцируемого в якоре. Таким образом, направление вращающего момента меняется на противоположное, что вызывает появление тормозящего эффекта. Скорость вращения якоря контролируется реле скорости, которое отключает питание якоря, когда она приближается к нулевой.
Разновидности вспомогательных систем экстренного торможения
Существуют две группы вспомогательных систем экстренного торможения:
- помощь при экстренном торможении;
- автоматическое экстренное торможение.
Первая создает максимальное тормозное давление, образующееся в результате нажатия водителем на педаль тормоза. По сути, она “дотормаживает” за водителя. Вторая – выполняет ту же функцию, но уже без участия водителя. Этот процесс происходит автоматически.
Система помощи при экстренном торможении
Исходя из принципа создания максимального тормозного давления, система этого типа делится на пневматическую и гидравлическую.
Пневматическая система помощи при экстренном торможении
Пневматическая система позволяет обеспечить максимальный КПД работы вакуумного усилителя тормозов. Она состоит из следующих элементов:
- датчика, расположенного внутри вакуумного усилителя и замеряющего скорость перемещения штока усилителя;
- электромагнитного привода штока;
- электронного блока управления (ЭБУ).
Пневматический вариант устанавливается, в основном, на автомобили, оборудованные антиблокировочной системой тормозов (ABS).
В основе принципа работы системы – распознавание характера экстренного торможения по скорости нажатия водителем на педаль тормоза. Эту скорость фиксирует датчик, передающий результат в электронную систему управления. Если сигнал больше установленного значения, ЭБУ активирует электромагнит привода штока. Вакуумный усилитель тормозов дожимает до упора педаль тормозов. Еще до срабатывания ABS происходит экстренное торможение.
К системам помощи при экстренном торможении пневматического типа относятся:
- BA (Brake Assist);
- BAS (Brake Assist System);
- EBA (Emergency Brake Assist) – устанавливается на автомобили Вольво, Тойота, Мерседес, БМВ;
- AFU – ставится на Ситроен, Рено, Пежо.
Гидравлическая система помощи при экстренном торможении
Гидравлический вариант системы “брейк ассист” создает максимальное давление жидкости в тормозной системе за счет элементов ESC (системы курсовой устойчивости).
Схема устройства и работы системы экстренного торможения
Конструктивно система состоит из:
- датчика давления в тормозах;
- датчика частоты вращения колес или датчика разряжения в вакуумном усилителе;
- выключателя стоп-сигнала;
- ЭБУ.
Система также имеет несколько типов:
- HBA (Hydraulic Braking Assistance) устанавливается на Фольксваген, Ауди;
- HBB (Hydraulic Brake Booster) ставят также на Ауди и Фольксваген;
- SBC (Sensotronic Brake Control) – предназначен для Мерседеса;
- DBC (Dynamic Brake Control) – ставят на БМВ;
- BA Plus (Brake Assist Plus) – Мерседес.
На основании сигналов датчиков ЭБУ включает гидравлический насос системы ESC и увеличивает давление в тормозной системе до максимального значения.
Помимо скорости нажатия на педаль тормоза система SBC учитывает силу нажатия на педаль, дорожное покрытие, направление движения и другие факторы. В зависимости от конкретных условии ЭБУ формирует оптимальное тормозное усиление на каждое колесо.
Вариация BA Plus учитывает расстояние до впереди движущегося транспорта. В случае опасности она предупреждает водителя, либо дотормаживает за него.
Система автоматического экстренного торможения
Система экстренного торможения этого типа более совершенна. Она распознает движущееся впереди транспортное средство либо препятствие с помощью радара и видеокамеры. Комплекс самостоятельно вычисляет расстояние до транспортного средства и в случае вероятной аварии снижает скорость. Даже при возможном столкновении последствия будут не такими серьезными.
Помимо автоматического экстренного торможения, устройство оснащено и другими функциями. Такими, как: предупреждение водителя об опасности столкновения посредством звуко-световой сигнализации. Также активируются некоторые устройства пассивной безопасности, за счет чего комплекс имеет другое название – “превентивная система безопасности”.
Конструктивно этот тип системы экстренного торможения базируется на других системах активной безопасности:
- адаптивного круиз-контроля (контроль за расстоянием);
- курсовой устойчивости (автоматическое торможение).
Известны следующие виды систем экстренного автоматического торможения:
- Pre-Safe Brake – для Мерседес;
- Collision Mitigation Braking System, CMBS применимы для автомобиля Хонда;
- City Brake Control – Фиат;
- Active City Stopи Forward Alert – устанавливается на Форд;
- Forward Collision Mitigation, FCM- Митсубиси;
- City Emergency Brake – Фолксваген;
- City Safety применимы на Вольво.
Сразу скажем, что трехфазные стабилизаторы призваны защитить исключительно трехфазные потребители. Если же к вашему дому подходит трехфазное питание, то для создания устойчивого напряжения во внутренней сети целесообразно устанавливать на каждую фазу отдельный однофазный стабилизатор.
Подобный подход позволит существенно снизить ваши затраты (3 стабилизатора мощностью 5, 7 и 10 кВт всегда дешевле одного устройства, рассчитанного на 30 кВт). К тому же, при просадке напряжения на одной из фаз, трехфазное устройство обесточит весь дом. Это конструктивная особенность стабилизатора, ориентированного на защиту трехфазных электродвигателей.
Обсудить особенности выбора и эксплуатации стационарных стабилизаторов вы можете, посетив соответствующий раздел нашего форума. Если вам интересно поделиться личным опытом установки реле контроля напряжения в паре с контактором, то на этот случай у нас тоже найдется подходящая тема. А видео, подробно описывающее монтаж щитка и распределительной коробки, поможет вам подключить квартиру к системе электроснабжения в соответствии с общепринятыми правилами электромонтажных работ.
Способы подключения реле времени
Исключительно от самой модели устройства зависит то, как подключить нагрузку к реле времени. В частности, у комбинированных устройств обычно имеется штепсель. Соответственно, используется стандартная розетка для обеспечения электропитания.
Если рассматривать электронные таймеры, имеющие конструкцию в виде модулей и монтирующиеся на дин-рейку, то клеммы могут быть расположены совершенно по-разному, что определяется фирмой-изготовителем и назначением самого устройства.
Тем не менее практически у всех механизмов указанного типа существует разделение коммутирующих контактов и цепей питания таймера. В любом случае схема подключения реле времени обычно приводится на каком-либо элементе корпуса самого устройства.
Таким образом, перед покупкой данного устройства, чтобы определиться, какие именно реле времени лучше, следует, прежде всего, оценить ваши потребности по функционалу устройства и взвесить финансовые возможности.
Если необходимо недорогое устройство, подберите простой моноблочный таймер. При потребности управлять сложной автоматизированной системой, больше подойдет модульный вариант с монтажом на дин-рейку. А если интересуют более совершенные устройства, то следует остановить свое внимание на программируемых реле.
В любом случае современные реле времени окажутся удобным и практичным механизмом, которое поможет вам наладить автономную работу необходимого оборудования.