Gazmarket59.ru

Газ Маркет 59
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Сверхпроводники тепловое действие тока

Сверхпроводники, мощность тока, электропроводимость

РубрикаФизика и энергетика
Видлекция
Языкрусский
Дата добавления19.10.2014
Размер файла70,5 K
  • посмотреть текст работы
  • скачать работу можно здесь
  • полная информация о работе
  • весь список подобных работ

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

§1. Зависимость сопротивления проводника от температуры. Сверхпроводники

С увеличением температуры сопротивление проводника возрастает по линейному закону

где R0 — сопротивление при t=0? С; R— сопротивление при температуре t, б — термический коэффициент сопротивления, показывает как меняется сопротивление проводника при изменении температуры на 1 градус. Для чистых металлов при не очень низких температурах , т.е. можно записать

При определенных температурах (0,14-20 К), называемых «критическими» сопротивление проводника резко уменьшается до 0 и металл переходит в сверхпроводящее состояние. Впервые в 1911 г. Это обнаружил Камерлинг-Оннес для ртути. В 1987 г. разработаны керамики, переходящие в сверхпроводящее состояние при температурах превышающих 100 К, так называемые высокотемпературные сверхпроводники — ВТСП.

§2. Элементарная классическая теория электропроводности металлов

Носителями тока в металлах являются свободные электроны, т.е. электроны слабо связанные с ионами кристаллической решетки металла. Наличие свободных электронов объясняется тем, что при образовании кристаллической решетки металла при сближении изолированных атомов валентные электроны, слабо связанные с атомными ядрами, отрываются от атома металла, становятся «свободными», обобществленными, принадлежащими не отдельному атому, а всему веществу, и могут перемещаться по всему объему. В классической электронной теории эти электроны рассматриваются как электронный газ, обладающий свойствами одноатомного идеального газа.

Электроны проводимости в отсутствии электрического поля внутри металла хаотически двигаются и сталкиваются с ионами кристаллической решетки металла. Тепловое движение электронов, являясь хаотическим, не может, привести к возникновению тока. Средняя скорость теплового движения электронов

2. Электрический ток в металле возникает под действием внешнего электрического поля, которое вызывает упорядоченное движение электронов. Выразим силу и плотность тока через скорость v упорядоченного движения электронов в проводнике.

За время dt через поперечное сечение S проводника пройдет N электронов

следовательно, даже при очень больших плотностях тока средняя скорость упорядоченного движения электронов , обуславливавшего электрический ток, значительно меньше их скорости теплового движения .

1. Электрический ток в цепи устанавливается за время , где L

длина цепи, с = 3·10 8 м/с — скорость света в вакууме. Электрический ток возникает в цепи практически одновременно с ее замыканием.

2. Средняя длина свободного пробега электронов л по порядку величины должна быть равна периоду кристаллической решетки металла л 10 -10 м.

3. С ростов температуры увеличивается амплитуда колебаний ионов кристаллической решетки и электрон чаше сталкивается с колеблющимися ионами, поэтому его длина свободного пробега уменьшается, а сопротивление металла растет,

Недостатки классической теории электропроводности металлов:

, n и л f(T) с

т.е. из классической теории электропроводности следует, что удельное сопротивление пропорционально корню квадратному из температуры, а из опыта следует, что оно линейно зависит от температуры, с

2. Дает неправильное значение молярной теплоемкости металлов. Согласно закону Дюлонга и Пти См = 3R, а по классической теории С = 9 / 2Rм ионной решетки = 3R + Смдноатомного электронного газа = 3/2R.

3. Средняя длина свободного пробега электронов из формулы (1) при подстановке экспериментального значения с и теоретического значения дает 10 -8 , что на два порядка больше средней длины пробега принимаемой в теории (10 -10 ).

§3. Работа и мощность тока. Закон Джоуля-Ленца

Т.к. заряд переносится в проводнике под действием электростатического поля, то его работа равна

Мощность — работа, совершаемая в единицу времени

Если ток проходит по неподвижному проводнику, то вся работа тока идет на нагревание металлического проводника, и по закону сохранения энергии

Удельной мощностью тока называется количество теплоты, выделенное в единице объема, проводника за единицу времени.

— Закон Джоуля-Ленца в дифференциальной форме.

§4. Правила Кирхгофа для разветвленных цепей

проводник мощность ток металл

Любая точка разветвленной цепи, в которой сходится не менее трех проводников, с током называется УЗЛОМ. При этом ток, входящий в узел, считается положительным, а выходящий — отрицательный,

Первое правило Кирхгофа: алгебраическая сумма токов, сходящихся в узле, равна нулю.

Первое правило Кирхгофа вытекает из закона сохранения заряда (заряд, вошедший в узел, равен вышедшему заряду).

Второе правило Кирхгофа: в либом замкнутом контуре произвольно выбранном в разветвленной электрической цепи, алгебраическая сумма произведений сил токов на сопротивления соответствующих участков этого контура равна алгебраической сумме ЭДС. встречающихся в контуре.

При расчете сложных цепей пстоянного тока с применением правил Кирхгофа необходимо:

1. Выбрать произвольное направление токов на всех участках цепи; действительное направление токов определится при решении задачи; если искомый ток получился положительным, то направление выбрано правильно, если отрицательным, то его истинное направление противоположно выбранному.

2. Выбрать направление обхода контура. Произведение положительно, если ток на данном участке совпадает с направлением обхода, и наоборот. ЭДС положительны, если они создают ток направленный в сторону обхода контура, против — отрицательны.

3. Записывается первое правило для N -1 узла.

4. Записать второе правило Кирхгофа для замкнутых контуров, которые могут быть выделены в цепи. Каждый рассматриваемый контур должен содержать хотя бы один элемент, не содержащийся в предыдущих контурах.

Число независимых уравнений, составленных в соответствии с первым и вторым правилом Кирхгофа, оказывается равным числу различных токов, текущих в разветвленной цепи. Поэтому, если заданы ЭДС и сопротивления для всех неразветвленных участков, то могут быть вычислены все токи.

Размещено на Allbest.ru

Подобные документы

Причины электрического тока. Закон Ома для неоднородного участка цепи. Закон Ома в дифференциальной форме. Работа и мощность. Закон Джоуля–Ленца. Плотность тока, уравнение непрерывности. КПД источника тока. Распределение напряженности и потенциала.

презентация [991,4 K], добавлен 13.02.2016

Свободные колебания в электрическом контуре без активного сопротивления. Свободные затухающие и вынужденные электрические колебания. Работа и мощность переменного тока. Закон Ома и вытекающие из него правила Кирхгофа. Емкость в цепи переменного тока.

презентация [852,1 K], добавлен 07.03.2016

Закон Ома электропроводности металлов. Состояние металла, возникающее в процессе электропроводности. Уравнение энергетического баланса процесса электропроводности в металлах. Деформационная поляризация металлов под действием электрического тока.

реферат [56,3 K], добавлен 26.01.2008

Понятие электрического тока, выбор его направления, действие и сила. Движение частиц в проводнике, его свойства. Электрические цепи и виды соединений. Закон Джоуля-Ленца о количестве теплоты, выделяемое проводником, закон Ома о силе тока на участке цепи.

презентация [194,6 K], добавлен 15.05.2009

Сверхпроводники. У начала пути. Сверхпроводники первого второго рода. Абрикосовские вихри. Свойства сверхпроводников. Микроскопическая теория сверхпроводимости Бардина — Купера — Шриффера (БКШ) и Боголюбова. Теория Гинзбурга — Ландау.

курсовая работа [60,1 K], добавлен 24.04.2003

Суть сверхпроводимости

Сверхпроводимость — это явление, при котором заряд движется через материал без сопротивления.

Теоретически это позволяет передавать электрическую энергию между двумя точками с идеальной эффективностью, ничего не теряя при прохождении тока.

Как работает сверхпроводимость?

Явление сверхпроводимости позволяет электронам преодолевать их обычное отталкивание друг друга и теснее прижимаясь друг к другу, образовывать так называемые куперовские пары (квазачастица из двух электронов). В этом низкоэнергетическом состоянии идентичность каждого отдельного электрона становится менее определенной. Это позволяет им с легкостью проскальзывать сквозь атомы материала.
Открыл явление сверхпроводимости в 1911 году голландский физик Хейке Камерлинг-Оннес когда исследовал зависимость электрического сопротивления металлов от температуры. Это открытие привело к огромному объему исследовательской деятельности. Сотрудничество между химиками и физиками, а также экспериментаторами и теоретиками дало начало значительному потенциалу применения, начиная от передачи электроэнергии и заканчивая квантовой информацией.
В обычных электрических проводниках ток передается электронами, действующими индивидуально. Но в сверхпроводниках электроны спариваются для передачи тока практически без потерь.

Считается, что около 40 элементов периодической системы могут обладать сверхпроводящими свойствами при определенных условиях.
Основные параметры сверхпроводящих материалов:

  • температура;
  • плотность тока;
  • магнитная индукция.

Из всех чистых металлов лучшими свойствами обладает ниобий, но не полностью выталкивает магнитное поле, что ограничивает его применение.

§ 6.3. Объяснение пара- и диамагнетизма

Парамагнетизм

Электроны, движущиеся в атомах или молекулах парамагнитных тел, создают в окружающем пространстве магнитное поле. Эти атомы приближенно можно рассматривать как маленькие замкнутые кольцевые токи (рис. 6.5). При внесении парамагнетика во внешнее поле отдельные элементарные токи стремятся ориентироваться по направлению линий индукции намагничивающего поля, точнее, нормали к контурам.

Поэтому магнитные поля элементарных токов усиливают внешнее поле. Хаотическое тепловое движение атомов препятствует правильной ориентации токов, и чем выше температура, тем меньший процент элементарных токов оказывается ориентированным по направлению поля, т. е. тем слабее намагничивается вещество. При выключении намагничивающего поля тепловое движение полностью разрушает ориентацию токов и вещество размагничивается.

Чем сильнее намагничивающее поле, тем большая часть элементарных_ токов оказывается ориентированной вдоль . Поэтому с возрастанием индукции намагничивающего поля магнитная индукция растет прямо пропорционально . Согласно (6.1.1) это означает, что μ не зависит от . В очень сильных полях все элементарные токи оказываются ориентированными по полю, несмотря на тепловое движение атомов. Достигается, как говорят, насыщение. Это означает отсутствие линейной зависимости от , магнитная проницаемость уменьшается при больших .

Диамагнетизм

В атомах и молекулах диамагнитных веществ токи, обусловленные движением электронов, имеют такую конфигурацию, что созданные ими магнитные поля взаимно компенсируют друг друга. В результате в обычном состоянии атом не создает поля. Почему же диамагнетики обнаруживают магнитные свойства? Причина этого проста. В момент включения магнитного поля (или при перемещении вещества в область, где это поле уже есть) в атомах или молекулах возникают индукционные токи подобно тому, как во вторичной обмотке трансформатора индуцируется ток при изменении магнитного поля, пронизывающего эту обмотку. Но в отличие от трансформатора индукционный ток в атоме не затухает и после исчезновения ЭДС индукции, так как сопротивления движению электронов в атомах нет.

Диамагнетизм целиком обусловлен явлением электромагнитной индукции. Согласно правилу Ленца направление индукционного тока таково, что созданное им поле противодействует намагничивающему полю (рис. 6.6). Понимать это нужно так: при включении магнитного поля возникает вихревое электрическое поле. Это поле заставляет электроны закручиваться вокруг магнитных линий . На существовавшее ранее движение электронов накладывается дополнительное вращение. Вследствие этого вращения и возникает поле, противодействующее намагничивающему полю с индукцией . При исчезновении внешнего магнитного поля исчезают индукционные токи и диамагнетик оказывается размагниченным.

Из сказанного очевидно, что диамагнетизм присущ всем телам без исключения, так как во всех атомах, помещенных в магнитное поле, возникает дополнительный индукционный ток. Но проявляется диамагнетизм только у тех веществ, атомы или молекулы которых не создают магнитного поля сами по себе. У парамагнитных и тем более ферромагнитных тел атомы обладают собственными «врожденными» магнитными свойствами, и поэтому слабый диамагнитный эффект у таких веществ маскируется другими более сильными эффектами.

Магнитная индукция поля, создаваемого диамагнетиками, прямо пропорциональна индукции намагничивающего поля. Согласно закону электромагнитной индукции напряженность вихревого электрического поля тем больше, чем больше изменение индукции магнитного поля от нуля до конечного значения B. Поэтому магнитная проницаемость диамагнетиков не зависит от B.

Отметим еще, что тепловое движение атомов в целом не нарушает ориентации индукционных токов внутри атомов. Они всегда лежат в плоскостях, перпендикулярных . Поэтому магнитная проницаемость диамагнетиков не зависит от температуры.

Сверхпроводники — идеальные диамагнетики

В предыдущей главе (см. § 5.9) уже говорилось о поведении сверхпроводников в переменном магнитном поле. Вернемся к этому вопросу и найдем значение μ для сверхпроводников.

Как было показано, в сверхпроводнике поток магнитной индукции индукционного тока равен потоку индукции внешнего поля и противоположен ему по знаку. Индукционный ток не просто стремится, согласно правилу Ленца, компенсировать то изменение магнитного потока, которое его порождает, но компенсирует его полностью. Магнитное поле вообще не проникает внутрь сверхпроводника. Это означает, что сверхпроводник является идеальным диамагнетиком. Так как магнитная индукция В внутри сверхпроводника равна нулю, то, согласно формуле (6.1.1), магнитная проницаемость сверхпроводника также равна нулю.

Будущее высокотемпературных сверхпроводников

Все эти проекты более или менее демонстрируют возможности, которые может предложить HTS. Последней проблемой на долгом пути к появлению большего количества сверхпроводящих материалов в энергетике является снижение затрат: сложный производственный процесс делает высокопроизводительными ВТСП-провода. Однако цена на высокотемпературный сверхпроводящий провод неуклонно снижается и приближается к ценовому диапазону медного провода (30–80 долл. США / кАм). Это обусловлено инвестициями в увеличение массового производства проволоки ВТСП.

Провод ВТСП может проводить тот же ток, что и медный кабель, примерно в одной десятой части поперечного сечения. Поэтому, когда используется для замены медных обмоток и постоянных магнитов, ВТСП-проволока обеспечивает значительное уменьшение объема и может создавать гораздо более высокие магнитные поля. Это позволяет создавать более компактные электродвигатели большей мощности.

Другим важным преимуществом замены меди на ВТСП в двигателях является отсутствие резистивного нагрева во время работы, а это означает, что требуется только очень небольшая мощность охлаждения, когда сверхпроводник ниже своей температуры перехода. Конечно, одна из основных проблем всегда заключается в том, как реализовать криогенную систему, необходимую для охлаждения вращающихся ВТСП-катушек. Это, однако, задача инженеров. За последние несколько десятилетий несколько производителей строили и испытывали мощные ВТСП-двигатели с высоким крутящим моментом, необходимым для судовых движителей. Siemens, например, продемонстрировал двигатель мощностью 4 МВт [6] и AMSC, систему 36,5 МВт.

Когда речь заходит об авиации, то перспетктивы электрических самолетов кажутся даже дальше электрических кораблей. Однако работа, проделанная на судовых двигателях HTS на протяжении многих лет, продемонстрировала, что преимущества, которые HTS привносит в технологию двигателей, еще более применимы к авиации. Самолеты предъявляют очень строгие требования к весу, что проявляется в заинтересованности отрасли в компонентах, изготавливаемых с добавками (а также в некоторых менее технологичных идеях). Следовательно, снижение расхода топлива не только необходимо для сокращения выбросов, но и является мощным финансовым фактором, Добавьте к этому преимущества снижения шума, загрязнения воздуха и электрификации авиации, которые становятся очень привлекательными для отрасли.

Разработки для пассажирских электрических самолетов в самом разгаре. Над прототипами работают Airbus, Wright Electric и Zunum Aero. Это в основном гибридные концепции, которые продемонстрируют работу электрических машин в тандеме с турбинными двигателями для тяги. В такой конфигурации моторы HTS могут внести существенный вклад. За рамками этого НАСА изложило планы по разработке самолета N3-X. Это должно обеспечить снижение расхода топлива на 70% за счет использования двух газовых HTS-генераторов для питания распределенных вентиляторных HTS-двигателей.

Несмотря на преимущества, в действительности внедрение HTS в двигательной установке происходит достаточно медленно. Скорее всего, это связано со сложностями технологии и связанных с этим дополнительных затрат на разработку.

Тем не менее, успехи, достигнутые в использовании свойств материалов HTS с момента их открытия в 80-х годах, были огромными. Усилия по-прежнему требуются для внедрения двигателей HTS в больших масштабах, однако, особенно в случае авиации, амбициозные цели развития никогда не препятствовали прогрессу.

Поскольку давление увеличивается для сокращения выбросов на транспорте, HTS будет предлагать не только усовершенствования обычных устройств, но и станет ключевой технологией.

Разделение пространства сверхпроводником

По другому, плоский экран бесконечно больших размеров можно интерпретировать как разделитель всего трехмерного пространства на две части, которые не соединены друг с другом. Но пространство на две части может разделить не только плоский экран бесконечных размеров. Любая замкнутая поверхность делит пространство тоже на две части, на объем внутри замкнутой поверхности и объем вне замкнутой поверхности. Например, любая сфера делит пространство на две части: шар внутри сферы и всё, что снаружи.

Поэтому сверхпроводящая сфера является идеальным изолятором магнитного поля. Если поместить магнит в такую сверхпроводящую сферу, то никогда никакими приборами не удается обнаружить, есть ли внутри этой сферы магнит или его там нет.

И, наоборот, если Вас поместить внутрь такой сферы, то на Вас не будут действовать внешние магнитные поля. Например, магнитное поле Земли невозможно будет обнаружить внутри такой сверхпроводящей сферы никакими приборами. Внутри такой сверхпроводящей сферы можно будет обнаружить только магнитное поле от тех магнитов, которые будут находиться тоже внутри этой сферы.

Таким образом, чтобы два магнита не взаимодействовали друг с другом надо один из этих магнитов поместить во внутрь сверхпроводящей сферы, а второй оставить снаружи. Тогда магнитное поле первого магнита будет полностью сконцентрировано внутри сферы и не выйдет за пределы этой сферы. Поэтому второй магнит не почувствует привутствие первого. Точно также магнитное поле второго магнита не сможет залезть во внутрь сверхпроводящей сферы. И поэтому первый магнит не почувствует близкое присутствие второго магнита.

Наконец, оба магнита мы можем как угодно поворачивать и перемещать друг относительно друга. Правда первый магнит ограничен в своих перемещениях радиусом сверхпроводящей сферы. Но это только так кажется. На самом деле взаимодействие двух магнитов зависит только лишь от их относительного расположения и их поворотов вокруг центра тяжести соответствующего магнита. Поэтому достаточно разместить центр тяжести первого магнита в центре сферы и туда же в центр сферы поместить начало координат. Все возможные варианты расположения магнитов будут определяться только всеми возможными вариантами расположения второго магнита относительно первого магнита и их углами поворотов вокруг их центров масс.

Разумеется вместо сферы можно взять любую другую форму поверхности, например, эллипсоид или поверхность в виде коробки и т.п. Лишь бы она делила пространство на две части. То есть в этой поверхности не должно быть дырочки, через которую может пролезть силовая линия, которая соединит внутренний и внешний магниты.

  • Классика:
  • Хаос
  • Колебания
  • Энтропия
  • Квантовая физика:
  • Спин
  • Электронные оболочки
  • Обменное взаимодействие
  • Магнетизм:
  • Магнетизм
  • Изолятор поля магнита
  • Астрофизика:
  • Нейтронные звезды
  • Миф о черной дыре
  • Миф о парадоксе близнецов

1. Сила тока обозначатся буквой I — она равна количеству электричества Q, проходящему через проводник за время t.

Сила тока определяется амперметром.

2. Напряжение U — равняется разности потенциалов на участке цепи.

Напряжение определяется вольтметром.

3. Сопротивление R проводящего материала.

а) от сечения проводника S, от его длины l и материала (обозначается удельным сопротивлением проводника ρ);

б) от температуры t°С (или Т): R = R0 (1 + αt),

  • где R0 – сопротивление проводника при 0°С,
  • α – температурный коэффициент сопротивления;

в) для получения различных эффектов, проводники могут соединяться как параллельно, так и последовательно.

Закон электромагнитной индукции. Вихревое электрическое поле. Вихревые токи

Подробности Электрический ток в цепи возможен, если на свободные заряды проводника действуют сторонние силы. Работа этих сил по перемещению единичного положительного заряда вдоль замкнутого контура называется ЭДС. При изменении магнитного потока через поверхность, ограниченную контуром, в контуре появляются сторонние силы, действие которых характеризуется ЭДС индукции.
Учитывая направление индукционного тока, согласно правилу Ленца:

ЭДС индукции в замкнутом контуре равна скорости изменения магнитного потока через поверхность, ограниченную контуром, взятой с противоположным знаком.

Почему? — т.к. индукционный ток противодействует изменению магнитного потока, ЭДС индукции и скорость изменения магнитного потока имеют разные знаки.

Если рассматривать не единичный контур, а катушку, где N- число витков в катушке:

Величину индукционного тока можно рассчитать по закону Ома для замкнутой цепи

где R — сопротивление проводника.

ВИХРЕВОЕ ЭЛЕКТРИЧЕСКОЕ ПОЛЕ

Причина возникновения электрического тока в неподвижном проводнике — электрическое поле. Всякое изменение магнитного поля порождает индукционное электрическое поле независимо от наличия или отсутствия замкнутого контура, при этом если проводник разомкнут, то на его концах возникает разность потенциалов; если проводник замкнут, то в нем наблюдается индукционный ток.

Индукционное электрическое поле является вихревым. Направление силовых линий вихревого электрического поля совпадает с направлением индукционного тока Индукционное электрическое поле имеет совершенно другие свойства в отличии от электростатического поля.

Электростатическое поле — создается неподвижными электрическими зарядами, силовые линии поля разомкнуты — -потенциальное поле, источниками поля являются электрические заряды, работа сил поля по перемещению пробного заряда по замкнутому пути равна 0

Индукционное электрическое поле ( вихревое электр. поле ) — вызывается изменениями магнитного поля, силовые линии замкнуты (вихревое поле), источники поля указать нельзя, работа сил поля по перемещению пробного заряда по замкнутому пути равна ЭДС индукции.

Индукционные токи в массивных проводниках называют токами Фуко. Токи Фуко могут достигать очень больших значений, т.к. сопротивление массивных проводников мало. Поэтому сердечники трансформаторов делают из изолированных пластин. В ферритах — магнитных изоляторах вихревые токи практически не возникают.

Использование вихревых токов

— нагрев и плавка металлов в вакууме, демпферы в электроизмерительных приборах.

Вредное действие вихревых токов

— это потери энергии в сердечниках трансформаторов и генераторов из-за выделения большого количества тепла.

Следующая страница «ЭДС индукции в движущихся проводниках»

Назад в раздел «10-11 класс»

Электромагнитное поле — Класс!ная физика

Взаимодействие токов. Магнитное поле. Вектор магнитной индукции. Сила Ампера — Действие магнитного поля на движущийся заряд.Магнитные свойства вещества — Явление электромагнитной индукции. Магнитный поток. Направление индукционного тока. Правило Ленца — ЭДС электромагнитной индукции. Вихревое электрическое поле — ЭДС индукции в движущихся проводниках — Самоиндукция. Индуктивность. Энергия магнитного поля. Вопросы к пр/работе

голоса
Рейтинг статьи
Читайте так же:
Тепловое воздействие токов короткого замыкания
Ссылка на основную публикацию
Adblock
detector