Тепловой эффект электрического тока
- 1 Определения
- 2 Практическое значение
- 2.1 Снижение потерь энергии
- 2.2 Выбор проводов для цепей
- 2.3 Электронагревательные приборы
- 2.4 Плавкие предохранители
- 3 См. также
- 4 Примечания
В словесной формулировке звучит следующим образом [2] :
Мощность тепла, выделяемого в единице объёма среды при протекании постоянного электрического тока, равна произведению плотности электрического тока на величину напряженности электрического поля.
Математически может быть выражен в следующей форме:
w = j → ⋅ E → = σ E 2 ,
где w — мощность выделения тепла в единице объёма, j →
— плотность электрического тока, E →
— напряжённость электрического поля, σ — проводимость среды, а точкой обозначено скалярное произведение.
Закон также может быть сформулирован в интегральной форме для случая протекания токов в тонких проводах [3] :
Количество теплоты, выделяемое в единицу времени в рассматриваемом участке цепи, пропорционально произведению квадрата силы тока на этом участке и сопротивления участка.
В интегральной форме этот закон имеет вид
d Q = I 2 R d t , Q = ∫ t 1 t 2 I 2 R d t ,
где d Q — количество теплоты, выделяемое за промежуток времени d t
, I
— сила тока, R
— сопротивление, Q
— полное количество теплоты, выделенное за промежуток времени от t 1
до t 2
. В случае постоянных силы тока и сопротивления:
Q = I 2 R t .
Применяя закон Ома, можно получить следующие эквивалентные формулы:
Q = U 2 t / R = I U t .
Единица измерения электрического тока
Электрический ток представляется как объем заряда, переносимого в единицу времени через единицу площади сечения материала. Единицей измерения признан Ампер, а в качестве обозначения применяется латинская буква I, происходящая от французского словосочетания intensité de courant. Этот символ использовался Ампером, именем которого названа единица, хотя до 1896 года частные журналы продолжали использовать С. В физике бытует иное определение ампера: «Это сила тока, которая между двумя параллельными проводниками, расположенными на удалении одного метра друг от друга в вакууме, вызывает силу взаимодействия на участке длиной 1 метр величиной 0,2 мкН».
Толкование обусловлено фактом, что протекающий ток создаёт вокруг проводника магнитное поле, успешно взаимодействующее с прочими. Процесс нормируется законом Ампера, выведенным в 1820 году. Изначально в формулу входила магнитная индукция, но потом оказалась установлена необязательность величины. Она зависит от величины тока, расстояния до исследуемой точки и магнитной постоянной (физическая константа).
Условия получения и законы
Электроток возникает при воздействии электромагнитного поля на проводник. Но также справедливо и обратное утверждение, доказывающее возникновение электрического поля в результате протекания тока. Важными условиями его получения являются такие факторы: наличие свободных электронов и источника напряжения. Наличие носителей заряда влияет на проводимость, а напряжение является внешней силой, которая способствует «вырыванию» из кристаллической решетки этих частиц.
Проводимость веществ
Носителями заряда в металлах являются электроны. При высокой температуре проводника возникает движение атомов, некоторые из них распадаются и образуются новые свободные электроны. Заряженные частицы взаимодействует с атомами и узлами кристаллической решетки, и часть энергии превращается в тепловую. Этот процесс называется электрическим сопротивлением проводника. Оно зависит от следующих составляющих:
Температуры.
- Типа вещества.
- Длины проводника.
- Площади поперечного сечения.
При уменьшении температуры вещества происходит снижение его сопротивления. Зависимость от типа вещества объясняется тем, что каждое вещество состоит из атомов. Они образуют между собой кристаллическую решетку, причем у каждого вещества она разная. Каждый атом имеет определенную электронную конфигурацию, а следовательно, отличается от других наличием носителей заряда.
Кроме того, потоку заряженных частиц сложнее пройти через длинный проводник с маленьким значением его площади поперечного сечения.
Проводником является и электролит или жидкость, проводящая электрический ток. Носителями заряда в жидкостях являются ионы, которые бывают положительно (анионы) и отрицательно (катионы) заряжены. Электрод с положительным потенциалом называется анодом, а с отрицательным — катодом. Перемещение происходит при подаче напряжения на электроды. Катионы перемещаются к аноду, а анионы — к катоду.
При протекании тока через электролит происходит его нагревание, в результате которого увеличивается сопротивление жидкости. Некоторые газы способны проводить электроток тоже. Носителями заряда в них являются ионы и электроны, а сам «заряженный газ» называется плазмой.
Электричество в полупроводниках подчиняется тем же законам, что и в проводниках, но есть некоторые отличия. Представлять носители заряда в них могут электроны и дырки. При уменьшении температуры сопротивление его возрастает. При внешнем воздействии на полупроводник связи в кристаллической решетке ослабевают и появляются свободные электроны, а в месте, где они были, происходит образование дырки. Однако она притягивает другой электрон, который находится рядом. Так и происходит движение дырок. Следовательно, сумма дырочного и электронного электромагнитных полей образует электроток.
Основные соотношения
Все явления подчиняются физическим законам, и электричество не является исключением. Основные соотношения зависимости одной величины от других описаны в законах, которые применяются для расчета различных схем для простых и сложных устройств. Кроме того, правила помогают избежать различных аварийных ситуаций, поскольку электричество может служить и во вред человечеству, вызывая пожары, травмы и даже смерть.
Основным законом, используемым в электротехнике, является закон Ома для участка и полной цепи. Для участка цепи он показывает зависимость силы тока I от напряжения U и электрического сопротивления R и его формулировка следующая: ток, протекающий на участке цепи, прямо пропорционален значению напряжения и обратно пропорционален сопротивлению этого участка (I = U / R).
Для полной цепи, в которой существует электродвижущая сила (e) и внутреннее сопротивление источника питания: формулировка выглядит следующим образом: ток, протекающий в полной цепи, прямо пропорционален электродвижущей силе (ЭДС) и обратно пропорционален полному сопротивлению цепи с учетом внутреннего сопротивления источника питания (i = e / (R + Rвн)).
Из этих законов можно получить следствия, которые нужны для нахождения величин напряжения, ЭДС и сопротивлений. Следствия из законов Ома:
R = U / I.
- U = I * R.
- e = i * (R + Rвн).
- R = (e / i) — Rвн.
- Rвн = (e / i) — R.
Электроток, при прохождении через проводник или полупроводник, совершает работу, при которой выделяется тепловая энергия. Это одно из его свойств. Ее численное значение определяется с помощью закона Джоуля-Ленца.
Закон показывает зависимость количества теплоты от величин напряжения и силы тока, а также времени протекания электротока.
Его формулировка следующая: количество теплоты Q, выделяемое током при протекании через проводник за единицу времени, прямо пропорционально зависит от напряжения и силы тока (Q = U * I * t). Следствия из этого закона следующие:
- Q = sqr (I) * R * t.
- Q = (sqr (U) * t) / R.
I = Q / (U * t).
- I = sqrt ((Q / (R * t)).
- U = Q / (I * t).
- U = sqrt (Q * R * t).
- t = Q / (U * I).
- t = Q / (sqr (I) * R).
- t = Q / (sqr (U) / R).
- Q = P * t.
- P = Q / t.
- t = Q / P.
Величина Р является мощностью и вычисляется по формуле: Р = U * I. Если электрический ток в цепи не совершает механическую работу и не производит никакого действия, то все электрическая энергия преобразуется в тепловую, т. е. A = Q.
Опытным путем было установлено, что при пересечении линий электромагнитной индукции проводником замкнутого типа в нем появляется электроток. Закон о влиянии электромагнитного поля на возникновение тока называется законом Фарадея. Он гласит: отрицательное значение ЭДС электромагнитной индукции в контуре, который является замкнутым, равно изменению магнитного потока с течением времени. Из закона Фарадея следует, что при движении проводника в постоянном магнитном поле на концах первого возникает разность потенциалов. Этот принцип используется для изготовления генераторов, трансформаторов и т. д.
Таким образом, электрический ток, как все явления и процессы, подчиняется определенным законам, которые позволяют не только контролировать, но и избегать негативных последствий, связанных с его работой. Производить расчеты нужно и для экономии времени, поскольку подбор номинала какого-либо элемента схемы может привести к выходу из строя устройства.
10. Топливные элементы
Топливный элемент, который принимает водород и кислород в качестве входных данных
Теплопередача: зависит от типа топливного элемента
Топливные элементы — это электрохимические устройства, которые преобразуют химическую энергию топлива и окислителя в электрическую энергию. При работе топливного элемента значительная часть входной энергии используется для выработки электрической энергии, а оставшаяся часть преобразуется в тепловую энергию в зависимости от типа топливного элемента.
Тепло, получаемое в ходе этого процесса, используется для повышения энергоэффективности. Теоретически топливные элементы являются гораздо более энергоэффективными, чем обычные процессы: если отработанное тепло улавливается в когенерационной схеме, эффективность может достигать 90%.
Задача 1
45 г глюкозы (С6Н12О6) подвергли обработке избытком кислорода, в результате чего выделилось 700 кДж энергии. Выясните значение теплового эффекта? Реакция протекала по следующей формуле:
Найдем химическое количество глюкозы:
Получается, что при взаимодействии 0,25 моль вещества образуется 700 кДж энергии. Тепловой эффект приравнивают к значению 1 моль. Следовательно, составим пропорцию:
0,25 моль – 700 кДж
Q = (1* 700) : 0,25 = 700 : 0,25 = 2800 кДж
Задача 2
Представлено термохимическое уравнение, в процессе которого выделилось 3330 кДж энергии, образовалось 68 г Al2O3.Рассчитайте какое количества тепла выделилось, уравнение имеет следующий вид:
Найдем химическое количество оксида алюминия(III):
Исходя из исходного уравнения, для получения 4 моль оксида алюминия(III) расходуется 3330 кДж энергии, для того, чтобы выяснить, сколько выделяется тепла для 68 г, нужно составить пропорцию:
4 моль – 3330 кДж
0,667 моль – Q кДж
Q = (0,667 * 3330) : 4 = 2,221 : 4 = 555 кДж;
Закон Гесса
Закон Гесса устанавливает, что если из данных исходных веществ можно различными путями получить заданные конечные продукты, то независимо от пути получения, т.е. от числа и вида промежуточных реакций, суммарный тепловой эффект для всех путей будет одним и тем же.
Другими словами, тепловой эффект химической реакции зависит только от вида и состояния исходных веществ и продуктов реакции и не зависит от пути перехода.
Уясним смысл закона Гесса на примерах. Так как чаще всего химические реакции протекают при постоянном давлении, будем их тепловой эффект характеризовать изменением энтальпии [TEX]Delta
- Прямой реакцией превращения веществ А в вещества В с тепловым эффектом [TEX]Delta
>[/TEX]. - Реакцией, состоящей из двух стадий с тепловыми эффектами [TEX]Delta
>[/TEX]и[TEX]Delta >[/TEX] . - Совокупностью реакций с тепловыми эффектами [TEX]Delta
>[/TEX],[TEX]Delta >[/TEX],[TEX]Delta >[/TEX],[TEX]Delta >[/TEX].
Рисунок 6.1 — Иллюстрация закона Гесса
Закон Гесса утверждает, что эти тепловые эффекты связаны между собой соотношением:
Практическое значение закона Гесса состоит в том, что он позволяет вычислить тепловые эффекты таких реакций, для которых они непосредственно не могут быть измерены. Например, тепловой эффект[TEX]Delta H_
В соответствии с законом Гесса
Тепловые эффекты химических реакций могут быть измерены и экспериментально в специальных приборах, называемых калориметрами. Точные калориметрические измерения достаточно трудоёмки и требуют много времени. Поэтому их проводят только в случае невозможности использования закона Гесса.
При написании термохимических уравнений реакций указывают агрегатное состояние реагентов и тепловой эффект реакции :
Такая запись означает, что при реакции 1 моль газообразного ацетона[TEX]C_<3>H_<6>O[/TEX] с 4 моль газообразного кислорода получается 3 моль газообразного [TEX]CO_<2>[/TEX]и 3 моль жидкой воды. При этом выделяется 1817,0 кДж теплоты на 1 моль ацетона.
Так как тепловые эффекты зависят от физического состояния реагирующих веществ и условий, при которых протекает реакция, то для проведения термохимических расчётов, тепловые эффекты, вводимые в термохимические уравнения, должны быть отнесены к каким-то одинаковым условиям, в противном случае они несопоставимы. За такие условия принимают условия, при которых реакция осуществляется между веществами, находящимися в стандартных состояниях.
За стандартное состояние индивидуальных жидких и твёрдых веществ принимают их устойчивое состояние при температуре 298,15 К ([TEX]25<^
Из закона Гесса вытекают следствия, имеющие большое практическое значение.
а | б | в |
Рисунок 6.2 — Иллюстрация первого (а), второго (б) и третьего (в) следствий из закона Гесса.
- Тепловой эффект прямой реакции[TEX]Delta
[/TEX]равен по величине и противоположен по знаку тепловому эффекту обратной реакции[TEX]Delta (рис. 6.2,а).[/TEX], т.е.[TEX]Delta =-Delta [/TEX] - Если совершаются две реакции, приводящие из различных начальных состояний к одинаковому конечному состоянию, то разница между их тепловыми эффектами представляет собой тепловой эффект перехода из одного начального состояния в другое (рис. 6.2,б).
Рассмотрим классический пример определения теплового эффекта превращения графита в алмаз при стандартных условиях путём анализа реакций их горения:
В качестве примера приведём реакцию горения водорода с образованием одного моля воды:
- [TEX]H_<2>O_<(т)>rightarrow H_<2>O_<(ж)>[/TEX] [TEX]Delta
=+5,83к<Д>ж/моль[/TEX]
- [TEX]H_<2>O_<(ж)>rightarrow H_<2>O_<(г)>[/TEX] [TEX]Delta
=+44,01к<Д>ж/моль[/TEX]
- [TEX]H_<2>O_<(т)>rightarrow H_<2>O_<(г)>[/TEX] [TEX]Delta
=+49,84к<Д>ж/моль[/TEX].
Мы получим значения энтальпий плавления, испарения и сублимации воды.
Эксперимент второй. Фототок и освещенность
Следующий шаг — проверка линейности «люкс-амперной» характеристики. Имеется в виду пропорциональность освещенности и максимального значения фототока, а помешать такой линейности в принципе может только тепловой нагрев жидкости. Существует прекрасный способ избавиться от инфракрасного излучения — использовать воду в качестве поглотителя. Оказывается, достаточен слой воды в несколько сантиметров, чтобы заглушить это излучение полностью. Результаты измерений, аналогичных предыдущим, показали, что при использовании водного поглотителя (П = Н2О) фототок ведет себя совершенно по-другому (рис. 5). Самое основное: после выключения источника света сила фототока начинает резко уменьшаться. Вот оно, с одной стороны, обоснование фотоэлектрической природы тока в цепи, а с другой — подтверждение влияния инфракрасного излучения на электрические процессы в жидкости.
Теперь есть все, чтобы построить зависимость фототока от освещенности (рис. 6). Однако трех значений, приведенных на предыдущем рисунке, недостаточно. Значит, придется провести дополнительные измерения. Но и этого мало — каждое измерение придется повторить неоднократно, иначе есть опасность за результат выдать банальный промах. И тем не менее, у нас нет оснований сомневаться в линейности зависимости фототока от освещенности.
Всякое исследование должно заканчиваться выводом. В нашем случае можно высказать гипотезу, пусть даже и требующую проверки. А она такова: не исключено, что освещенность воды, даже очень слабая, является причиной темнового тока. По крайней мере, ощутимый вклад в электродвижущую силу световая экспозиция воды вносить безусловно должна.