Gazmarket59.ru

Газ Маркет 59
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Тепловые элементы химических источников тока

Соединение источников питания

К химическим источникам питания относятся источники эдс, в которых энергия протекающих химических реакций преобразуется в электрическую энергию. К химическим источникам относятся гальванические элементы, аккумуляторы и «батарейки» и пр.

Необходимость соединения элементов питания возникает в том случае, когда требуемое напряжение и ток потребителя превышают соответствующие значения источника питания.

Важным условием соединения химических источников питания в единую цепь, является равенство их эдс и внутреннего сопротивления.

Существует три способа подключения химических источников питания:

    • последовательно;
    • параллельно;
    • смешанно.

Соединенные между собой любым способом источники питания образуют так называемую батарею, рассматриваемую в цепи как единое целое.

Последовательное соединение источников питания

При последовательном подключении химических источников питания отрицательный полюс одного источника соединяется с положительным полюсом следующего источника и т.д. Положительный и отрицательный полюсы последнего и первого источника батареи подключаются к нагрузке внешней цепи (рисунок 1).

Рис. 1. Последовательное соединение источников питания

Общая эдс батареи при последовательном соединении химических источников питания равна сумме эдс всех входящих в нее элементов

Если учесть, что эдс всех источников одинаковая, предыдущее выражение может быть записано в виде

где Ei – эдс каждого источника питания в батарее.

При последовательном соединении внутренне сопротивление полученной батареи будет равно сумме сопротивлений каждого источника питания

где Ri – внутреннее сопротивление каждого источника питания в батарее.

При последовательном соединении источников питания, емкость батареи будет равна емкости каждого из источников питания.

Последовательное соединение химических источников питания применяется в том случае, когда ток нагрузки не превышает номинальный ток одного элемента, а напряжение – больше эдс одного источника.

Параллельное соединение источников питания

При параллельном соединении положительные полюсы источников питания соединяются в один общий узел, а отрицательные – в другой узел (рисунок 2).

Читайте так же:
Тепловая мощность тока через плотность тока

Рис. 2. Параллельное соединение источников питания

При данном способе соединения эдс батареи равна эдс одного любого источника, включенного в ее состав

где Ei – эдс каждого источника питания в батарее.

Внутреннее сопротивлении батареи уменьшается во столько раз, сколько источников входит в ее состав, и вычисляется по формуле

где Ri – внутреннее сопротивление каждого источника питания в батарее.

Параллельное соединение химических источников питания применяется в том случае, когда напряжение потребителя равно напряжению одного источника питания, а сила тока потребителя (нагрузки) значительно превосходит разрядный ток источника.

Смешанное соединение источников питания

При смешанном соединении элементы объединяются в группы последовательно соединенных элементов с равным числом источников питания. Положительные контакты каждой группы источников питания соединяются в один общий узел, а отрицательные – в другой узел (рисунок 3).

Рис. 3. Смешанное соединение источников питания

Смешанное соединение применяется тогда, когда необходимо обеспечить нагрузку напряжением и током, большим чем у входящих в состав батареи источников питания.

Литий «с плюсом»

Функционирование литий-ионных аккумуляторов основано на способности материалов, обладающих определенной структурой (так называемой «матрицей»), к обратимому внедрению ионов лития. Такие матрицы выступают в качестве «хозяина», который предоставляет свободные пространства своей структуры «гостю» – иону лития Li + . В процессе заряда (разряда) аккумулятора эти ионы уходят из одной матрицы и внедряются в другую. Выходное электрическое напряжение таких систем чуть меньше, чем металлических литиевых, зато уровень безопасности существенно выше.

По основным техническим характеристикам ЛИА существенно превосходят «конкурентов». Так, по сравнению с никель-металло-гидридными аналогами у ЛИА вдвое больше электрохимическая емкость и почти втрое выше плотность аккумулируемой энергии и удельная мощность. ЛИА выдерживает очень высокие токи разряда, что важно для использования в мощных переносных электроинструментах. Саморазряд составляет всего 2—5 %, а количество циклов «заряда – разряда» без потери емкости у них в 4—6 раз выше, чем у предшественников. ЛИА в меньшей степени подвержены и так называемому эффекту памяти – их можно начать перезаряжать в любой момент, не дожидаясь полной разрядки.

Читайте так же:
Настройка тепловой защиты автоматического выключателя

Но у ЛИА есть и недостатки, прежде всего – высокий риск взрывного разрушения при перезаряде или перегреве. Поэтому во все бытовые аккумуляторы встраивают электронную схему, которая ограничивает напряжение заряда. Кроме того, ЛИА полностью выводятся из строя в результате глубокой разрядки, да и вообще эти аккумуляторы пока еще довольно дороги.

Однако следует заметить, что литий-ионные технологии находятся только в начале пути, в то время как их «конкуренты» вплотную приблизились к своему теоретическому пределу. Будучи уже внедренными в промышленное производство, ЛИА до сих пор являются предметом интенсивного изучения, направленного на улучшение их электрохимических характеристик. Совершенствованию подвергаются все три компонента системы: электролит, катод и анод.

Классификация [ | ]

По возможности или невозможности повторного использования химические источники тока делятся на:

  • гальванические элементы (первичные ХИТ), которые из-за необратимости протекающих в них реакций невозможно перезарядить;
  • электрические аккумуляторы (вторичные ХИТ) — перезаряжаемые гальванические элементы, которые с помощью внешнего источника тока (зарядного устройства) можно перезарядить;
  • топливные элементы (электрохимические генераторы) — устройства, подобные гальваническому элементу, но отличающееся от него тем, что вещества для электрохимической реакции подаются в него извне, а продукты реакций удаляются из него, что позволяет ему функционировать непрерывно, пока обеспечивается подача реагентов.

Следует заметить, что деление элементов на гальванические и аккумуляторы до некоторой степени условное, так как некоторые гальванические элементы, например щелочные батарейки, поддаются подзарядке, но эффективность этого процесса крайне низка.

Электрический ток в вакууме

Получение основных носителей происходит за счет термоэлектронной эмиссией.

Термоэлектронная эмиссия — процесс испускания электронов при нагревании катода до высокой температуры.

Свойства электронных пучков:

  • вызывают нагревание тел;
  • при торможении возникает рентгеновское излучение;
  • при попадании на некоторые вещества (люминофоры) вызывают их свечение;
  • направление электронов может изменять под действием электрического и магнитного полей.
Читайте так же:
Единица измерения количества теплоты выделяемого проводником с током

Источники напряжения, преобразующие световую энергию в электрическую.

В электрическую энергию может быть преобразована и световая энергия, путем попадания света на фоточувствительную пленку в солнечном элементе. В основе солнечных элементов лежит использование фоточувствительной пленки, изготовленной из полупроводников. При освещении фоточувствительной пленки светом, происходит выбивание электронов со своих орбит. Тем самым образуются область отрицательно заряженных свободных электронов и область положительно заряженных дырок на соответствующих электродах. Так отдельный солнечный элемент вырабатывает небольшое напряжение. На рисунке 3.6 показано общее условно-графическое обозначение солнечного элемента.

Рисунок 3.7. УГО солнечного элемента

Для получения необходимого напряжения солнечные элементы соединяются в солнечные батареи (рисунок 3.7).

Рисунок 3.7. Солнечная батарея

В настоящее время солнечные батареи находят все большее и большее применение.

Заключение

Итак, подведем итоги, ответив на вопрос: как запомнить где плюс, где минус у катода с анодом? Есть удобное мнемоническое правило для электролиза, заряда аккумуляторов, гальваники и полупроводниковых приборов. У этих слов с аналогичными названиями одинаковое количество букв, что проиллюстрировано ниже:

Во всех перечисленных случаях ток вытекает из катода, а втекает в анод.

Пусть вас не собьёт с толку путаница: «почему у аккумулятора катод положительный, а когда его заряжают – он становится отрицательным?». Помните у всех элементов электроники, а также электролизеров и в гальванике – в общем у всех потребителей энергии анодом называют вывод, подключаемый к плюсу. На этом отличия заканчиваются, теперь вам проще разобраться что плюс, что минус между выводами элементов и устройств.

Напоследок рекомендуем просмотреть полезное видео по теме статьи:

Теперь вы знаете, что такое анод и катод, а также как запомнить их достаточно быстро. Надеемся, предоставленная информация была для вас полезной и интересной!

Читайте так же:
Тепло выключатель сделай сам

Литий-ионный аккумулятор

Литий-ионный аккумулятор – тип электрического аккумулятора, который широко распространён в современной бытовой электронной технике и находит своё применение в качестве источника энергии в электромобилях и накопителях энергии в энергетических системах. Первый литий-ионный аккумулятор выпустила корпорация Sony в 1991 году. Принципы заряда и разряда несколько отличаются от традиционных электрохимических систем. Заряд и разряд, в аккумуляторах данного типа, связан с переносом иона лития Li+ между позитивным и негативным электродами. Ион лития имеет способность внедряться (интеркалироваться) в кристаллическую решётку других материалов (например, в графит, окислы и соли металлов) с образованием химической связи, например: в графит с образованием LiC6, окислы (LiMO2) и соли (LiMRON) металлов:

Литий-ионный аккумулятор состоит из электродов (катодного материала на алюминиевой фольге и анодного материала на медной фольге), разделённых пропитанным электролитом пористым сепаратором.

Достоинства литий-ионных аккумуляторов:

  • высокое напряжение ячейки (более 3В);
  • низкий саморазряд;
  • возможность быстрого заряда (до 15 мин.);
  • высокая удельная емкость;
  • хорошая циклируемость;
  • высокая эффективность заряд-разряда (свыше 80%).

Необходимо отметить, что для частных систем накопления электроэнергии, данный тип батарей малопригоден вследствие высокой стоимости. Имея основное преимущество перед свинцово-кислотными аккумуляторами в виде более длительного срока службы (до 3000 циклов заряда разряда против 500-1000) они имеют стоимость в три и более раз большую. То есть происходит нивелирование преимущества – за срок эксплуатации одного комплекта литий-ионных аккумуляторов будет использовано около трех комплектов свинцовых аккумуляторов, при этом комплекты будут иметь близкую стоимость. Кроме того, можно выделить следующие недостатки литий ионной технологии:

  • взрывоопасность (содержат легко воспламеняемые органические растворители в составе электролита);
  • обладают эффектом памяти заряда;
  • не могут храниться в разряженном состоянии длительное время (требуют заряда на 40%);
  • требовательны к температурному режиму (не работают при низких температурах);
  • не могут работать без специальных систем менеджмента заряда-разряда;
  • подвержены старению.
Читайте так же:
Автоматические выключатели с тепловым расцепителем 10а 1ф авв s201

Нет однозначного ответа на вопрос: «Какой аккумулятор лучше?». Такое разнообразие видов было обусловлено тем, что они создавались для решения различных задач. Наши инженеры помогут Вам подобрать аккумулятор, идеально подходящий для ваших целей.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector